Tag Archives: Autoantibodies

Anticoronavirals: the development of COVID-19 therapies and the challenges that remain

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

In a recent article published in Nature Microbiology, researchers highlighted the pace of development of coronavirus disease 2019 (COVID-19) therapies during the pandemic and the challenges that hinder the widespread availability of anticoronavirals.

Study: Therapeutics for COVID-19. Image Credit: Viacheslav Lopatin/Shutterstock.com
Study: Therapeutics for COVID-19. Image Credit: Viacheslav Lopatin/Shutterstock.com

Background

COVID-19 is the third coronavirus disease in the past 20 years after severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). While the two predecessors caused severe mortality, they did not cause a pandemic. On the contrary, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered a pandemic, and by 21 February 2023, it had caused more than 757 million confirmed cases, including >6.8 million deaths worldwide.

Vaccines and monoclonal antibody (mAb) treatments for COVID-19 became available within a year of the pandemic. Yet, there is a substantial need for more effective therapeutics to treat unvaccinated and immunocompromised patients and those whose vaccine immunity waned over time.

About the study

In this study, the authors highlighted four stages of SARS-CoV-2 infection that require different therapeutic interventions as critical for identifying COVID-19 therapeutic targets. At stage 1, when viral replication begins inside the host, oral or intravenous administration of monoclonal antibodies and antiviral therapies are effective. However, an ideal time for prophylactic administration of vaccines is Stage 0 preceding the infection.

Clinical trials have established that mAbs and antivirals effectively combat COVID-19 when administered up to 10 days after symptom onset and within three to five days following the onset of symptoms, respectively. COVID-19 patients in stage 2 develop viral pneumonia, cough and fever, lung inflammation causing shortness of breath, and lung aberrations, such as ground glass opacities.

The most serious is stage 3 characterized by a hyperinflammatory state or acute respiratory distress syndrome (ARDS). Some patients might also develop coagulation disorders or shock or systemic inflammatory response syndrome (SIRS). Thus, at stage 3, a patient needs antiviral drugs and immunomodulatory therapy.

Stage 4 represents post-COVID-19 conditions when patients experience hyperinflammatory illnesses, e.g., multi-system inflammatory syndrome in children (MISC), following acute SARS-CoV-2 infection. Unfortunately, possible preventative measures and treatment for post-acute sequelae of SARS-CoV-2 (PASC) are not fully understood. It is a growing area of unmet medical need; thus, extensive research efforts are ongoing to classify PASC, which might be a conglomeration of several syndromes, and determine its cause(s).

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

The National Institutes of Health (NIH) Treatment Guidelines Panel makes recommendations for the treatment and prevention of COVID-19. Early in the pandemic, clinicians used azithromycin and hydroxychloroquine as a possible COVID-19 treatment for hospitalized patients based on in vitro evidence of their synergistic effect on SARS-CoV-2 infection. Later, clinical trials found this combination ineffective. Similarly, the NIH panel did not specify recommendations for empirical antimicrobials.

The NIH rejected giving vitamin/mineral supplements, e.g., zinc, for hospitalized COVID-19 patients. On the contrary, they recommended prompt use of supplemental oxygenation and high-flow nasal cannula in patients with ARDS. In the absence of effective treatments, clinical recommendations by NIH continue to change and evolve.

Early drug repurposing efforts targeted nucleotide prodrugs, e.g., remdesivir (or GS-5734), AT-527, favipiravir, and molnupiravir (or MK-4482). However, only three antivirals received full Emergency Use Authorization (EUA) approval from the United States Food and Drug Administration (US-FDA), remdesivir, molnupiravir, and nirmatrelvir.

Pre-clinical characterization of remdesivir for other coronaviruses, pharmacokinetic and safety evaluation in humans in a failed clinical trial for Ebola virus, all acquired before the beginning of the COVID-19 pandemic, enabled rapid progression of remdesivir.

A phase 3 study conducted among patients in outpatient facilities and nursing facilities showed that remdesevir administration within seven days of symptom onset decreased hospitalization risk by 87%. Thus, its approval extended to high-risk non-hospitalized patients as well. Currently, phase 1b/2a study for inhaled remdesivir, and pre-clinical evaluation of an oral prodrug based on remdesivir is ongoing.

Another randomized phase III trial evaluated ivermectin, metformin, and fluvoxamine, all repurposed drug candidates, for early COVID-19 treatment of overweight or obese adults. Earlier pivotal efficacy and clinical studies found that molnupiravir provided no clinical benefit in hospitalized COVID-19 patients.

Conversely, the MOVe-OUT outpatient study demonstrated that treatment initiated within five days of symptom onset reduced the hospitalization risk or death. Accordingly, molnupiravir attained an EUA in the US on in late 2021 for treatment of mild-to-moderately ill COVID-19 patients at high risk of progression to severe disease. However, an outpatient study suggested that molnupiravir might augment SARS-CoV-2 evolution in immunocompromised individuals.

if (g_displayableSlots.mobileBottomMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-mrec’); });
}

In the USA, multiple initiatives have been undertaken to identify candidate agents that may be repurposed as COVID-19 drugs. For instance, the Bill and Melinda Gates Foundation launched the Therapeutics Accelerator in March 2020, wherein they adopted a three-way approach to test approved drugs, screen drug repositories, and evaluate novel small molecules, including mAbs against SARS-CoV-2.

Encouragingly, apilimod, a PIKfyve kinase inhibitor developed for treating autoimmune diseases, is being tested for COVID-19 in clinical studies. Likewise, multiple clinical trials are ongoing for camostat mesilate, an inhibitor of transmembrane protease serine 2 (TMPRSS2), an approved chronic pancreatitis treatment in Japan.

Among anti-inflammatory and immunomodulating drugs, dexamethasone, a corticosteroid, baricitinib, a Janus kinase (JAK) inhibitor, and tocilizumab have received FDA approval. Among mAb therapies, casirivimab with imdevimab and bamlanivimab with etesevimab, Sotrovimab, Bebtelovimab, Tixagevimab–cilgavimab have received FDA approval. However, as SARS-CoV-2 continues to evolve, changes in the spike protein led to EUAs being withdrawn for all mAb therapies due to loss of efficacy.

Conclusions

There is a vast knowledge gap regarding COVID-19 pathogenesis. Despite the absence of a viral reservoir, severe disease persists for weeks or even months after COVID-19 recovery. Another intriguing area of investigation is why autoantibodies increase over time during COVID-19. In February 2022, the government of the United States of America (USA) started a flagship program, RECOVER, to understand, prevent and treat COVID-19-related long-term health effects.

Amid decreasing vaccine uptake and waning efficacy of mAbs as SARS-CoV-2 mutates, there is a need for new, safe, and effective COVID-19 therapies for population-level deployment and the potential to reduce resistance development. Researchers need to accelerate research targeting small molecule candidates that would mechanistically target the conserved region of SARS-CoV-2 and not become ineffective across mutant strains.

To be prepared for another pandemic, a large repository of small molecules that have already progressed through early pre-clinical and clinical evaluation is needed to develop drugs, like remdesivir, developed in a short span of two years.

More importantly, research efforts should continue to advance the development of antivirals for other pathogens, including coronaviruses, in preparation for the next pandemic.

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Journal reference:

First clinical trial of GABA/GAD focused exclusively on children with recent onset Type 1 diabetes

For the first time, humans with newly diagnosed Type 1 diabetes, or T1D, have received two treatments called GABA and GAD that have shown promise in animal studies and in isolated human pancreas islets. This investigator-initiated clinical trial, published in Nature Communications, focused exclusively on children with recent onset T1D.

Diabetes is a disease affecting two pancreatic hormones -; insulin and glucagon. In healthy people, insulin helps cells take up glucose from the blood when glucose levels are high. In contrast, glucagon helps the liver release glucose into the bloodstream when glucose levels are low. Thus, levels of blood glucose remain steady.

In T1D, autoantibodies destroy the pancreatic beta cells, insulin release is diminished, and glucagon release is excessive relative to the insulin deficiency. This can cause a vicious cycle of escalating blood glucose levels. Strategies to ameliorate or cure T1D, therefore, target the preservation of insulin-secreting beta cells and/or attenuation of the relative excess of alpha cell glucagon. Most importantly, concerning the inhibition of alpha cell glucagon in this trial by GABA/GAD, recent studies in animals made diabetic have shown that inhibition of glucagon leads to expansion of insulin-secreting beta cells and improvements in hyperglycemia.

Researchers in the study, led by University of Alabama at Birmingham physicians, were able to enroll children within the first five weeks of diagnosis, before the near total eradication of beta cells. Forty percent of the study participants were younger than 10 years old. The study -; which was constrained to lower-dose GABA therapy by the United States Food and Drug Administration because it was the first human trial with GABA -; did not achieve its primary outcome, the preservation of insulin production by beta cells. However, it did meet the clinically relevant secondary outcome of reduced serum glucagon. Significantly, the trial confirmed the safety and tolerability of oral GABA. Additionally, in collaboration with the immunology team of Hubert Tse, Ph.D., at the UAB Comprehensive Diabetes Center, a separate manuscript under review will describe a salutary effect of GABA alone and in combination with GAD on cytokine responses in peripheral blood mononuclear cells from trial participants.

GABA is gamma aminobutyric acid, a major inhibitory neurotransmitter. In the endocrine pancreas, GABA participates in paracrine regulation -; meaning a hormone that acts on nearby cells -; on the beta cells that produce insulin and the alpha cells that produce glucagon. In various mouse model studies, GABA was able to delay diabetes onset, and restore normal blood glucose levels after diabetes had already commenced. GABA treatment also led to significant decreases in the inflammatory cytokine expression that participates in the pathogenesis of T1D.

GAD is glutamic acid decarboxylase, the enzyme that acts on glutamate to form GABA. Animal and pancreatic islet cell studies show that immunization with GAD alone may help preserve beta cells. Both GABA and GAD are highly concentrated in the pancreatic islet, which is the autoimmune target of T1D.

The study, which was conducted between March 2015 and June 2019, screened 350 patients and enrolled 97, whose ages averaged 11 years. Forty-one took oral GABA twice a day; 25 took the oral GABA in combination with two injections of GAD, one at the baseline visit and one at the one-month visit. The remaining 31 children received a placebo treatment. Analysis after one year of treatment included 39 in the GABA group, 22 in the GABA/GAD group and 30 in the placebo group.

Given that GABA reduces immune inflammation at higher doses in several diabetic rodent models, it is plausible that increased GABA doses, or longer-acting preparations, could offer sufficiently prolonged, above-threshold GABA concentrations to preserve islet cells, particularly during stage 1 diabetes.”

Gail Mick, M.D., UAB Professor in the Department of Pediatrics’ Division of Pediatric Endocrinology and Diabetes

Mick and Kenneth McCormick, M.D., who recently retired from UAB Pediatrics, co-led the trial.

Alexandra Martin and Mick, UAB Department of Pediatrics, are co-first authors of the study, “A randomized trial of oral gamma aminobutyric acid (GABA) or the combination of GABA with glutamic acid decarboxylase (GAD) on pancreatic islet endocrine function in children with newly diagnosed type 1 diabetes.”

Other authors are Heather M. Choat, Alison A. Lunsford and Kenneth L. McCormick, UAB Department of Pediatrics; Hubert M. Tse, UAB Department of Microbiology; and Gerald G. McGwin Jr., Department of Epidemiology, UAB School of Public Health.

Source:
Journal reference:

Martin, A., et al. (2022) A randomized trial of oral gamma aminobutyric acid (GABA) or the combination of GABA with glutamic acid decarboxylase (GAD) on pancreatic islet endocrine function in children with newly diagnosed type 1 diabetes. Nature Communications. doi.org/10.1038/s41467-022-35544-3.

What are the major findings of long COVID research?

In a recent review published in Nature Reviews Microbiology, researchers explored existing literature on long coronavirus disease (COVID). They highlighted key immunological findings, similarities with other diseases, symptoms, associated pathophysiological mechanisms, and diagnostic and therapeutic options, including coronavirus disease 2019 (COVID-19) vaccinations.

Study: Long COVID: major findings, mechanisms and recommendations. Image Credit: Ralf Liebhold/Shutterstock
Study: Long COVID: major findings, mechanisms and recommendations. Image Credit: Ralf Liebhold/Shutterstock

Long COVID refers to a multisystemic disease among SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2)-positive individuals, with increasing prevalence rates by the day. Studies have reported on long COVID risk factors, symptoms, pathophysiology, diagnosis, and treatment options, with increasing similarities between long COVID and other diseases such as POTS (postural orthostatic tachycardia syndrome) and ME/CFS (myalgic encephalomyelitis/ chronic fatigue syndrome).

About the review

In the present review, researchers explored the existing data on long COVID immunology, symptoms, pathophysiology, diagnosis, and therapeutic options.

Key long COVID findings and similarities with other diseases

Studies have reported persistently reduced exhausted T lymphocytes, dendritic cells, cluster of differentiation 4+ (CD4+) lymphocyte and CD8+ lymphocyte counts, and greater PD1 (programmed cell death protein-1) expression. In addition, increase in innate cell immunological activities, non-classical monocytes, expression of interferons (IFNs)-β, λ1, and interleukins (IL)-1β, 4,6, tumor necrosis factor (TNF). Cytotoxic T lymphocyte expansion has been linked to gastrointestinal long COVID symptoms, and persistent increase in CCL11 (C-X-C motif chemokine 11) expression has been linked to cognitive dysfunction among long COVID patients.

Elevated autoantibody titers have been reported among long COVID patients, such as autoantibodies against ACE2 (angiotensin-converting enzyme 2), angiotensin II receptor type I (AT1) receptors, β2-adrenoceptors, angiotensin 1–7 Mas receptors, and muscarinic M2 receptors. Reactivation of Epstein-Barr virus (EBV) and human herpes virus-6 (HHV-6) has been reported in long COVID patients and ME/CFS. EBV reactivation has been linked to neurocognitive impairments and fatigue in long COVID.

SARS-CoV-2 persistence reportedly drives long COVID symptoms. SARS-CoV-2 proteins and/or ribonucleic acid (RNA) have been detected in cardiovascular, reproductive, cranial, ophthalmic, muscular, lymphoid, hepatic, and pulmonary tissues, and serum, breast, urine, and stool obtained from long COVID patients. Similar immunological patterns are noted between long COVID and ME/CFS, with elevated cytokine levels in the initial two to three years of disease, followed by reduction with time, without symptomatic improvements in ME/CFS. Lower cortisol levels, mitochondrial dysfunction, post-exertional malaise, dysautonomia, mast cell activation, platelet hyperactivation, hypermobility, endometriosis, menstrual alterations, and intestinal dysbiosis occur in both conditions.

Long COVID symptoms and underlying pathophysiological mechanisms

Long COVID-associated organ damage reportedly results from COVID-19-induced inflammation and associated immune responses. Cardiovascular long COVID symptoms such as chest pain and palpitations have been associated with endothelial dysfunction, micro-clotting, and lowered vascular density. Long COVID has been associated with an increased risk of renal damage and type 2 diabetes. Ophthalmic symptoms of long COVID, including altered pupillary responses to light, result from the loss of small nerve fibers in the cornea, increased dendritic cell density, and impaired retinal microvasculature. Respiratory symptoms such as persistent cough and breathlessness result from altered pulmonary perfusion, epithelial injury, and air entrapment in the airways.

Cognitive and neurological long COVID symptoms include loss of memory, cognitive decline, sleep difficulties, paresthesia, balancing difficulties, noise and light sensitivity, tinnitus, and taste and/or smell loss. Underlying pathophysiological mechanisms include kynurenine pathway activation, endothelial injury, coagulopathy, lower cortisol levels, loss of myelin, microglial reactivation, oxidative stress, hypoxia, and tetrahydrobiopterin deficiency.  Gastrointestinal symptoms such as pain in the abdomen, nausea, appetite loss, constipation, and heartburn have been associated with elevated Bacteroides vulgatus and Ruminococcus gnavus counts and lower Faecalibacterium prausnitzii counts. Neurological symptoms often have a delayed onset, worsen with time and persist longer than respiratory and gastrointestinal symptoms, and long COVID presents similarly in children and adults.

Diagnostic and therapeutic options for long COVID, including COVID-19 vaccines

The diagnosis and treatment of long COVID are largely symptom-based, including tilt tests for POTS, magnetic resonance imaging (MRI) to detect cardiovascular and pulmonary impairments, and electrocardiograms to detect QRS complex fragmentation. Salivary tests and serological tests, including red blood cell deformation, lipid profile, complete blood count, D-dimer, and C-reactive protein (CRP) evaluations, can be performed to assess immunological biomarker levels. PCR (polymerase chain reaction) analysis is used for SARS-CoV-2 RNA detection and quantification, and antibody testing is performed to assess humoral immune responses against SARS-CoV-2.

Pharmacological treatments include intravenous Ig for immune dysfunction, low-dosage naltrexone for neuronal inflammation, beta-blockers for POTS, anticoagulants for microclot formation, and stellate ganglion blockade for dysautonomia. Other options include antihistamines, paxlovid, sulodexide, and pycnogenol. Non-pharmacological options include cognitive pacing for cognitive impairments, diet limitations for gastrointestinal symptoms, and increasing salt consumption for POTS. COVID-19 vaccines have conferred minimal protection against long COVID, the development of which depends on the causative SARS-CoV-2 variant, and the number of vaccination doses received. Long COVID has been reported more commonly post-SARS-CoV-2 Omicron BA.2 subvariant infections.

Based on the review findings, long COVID is a multiorgan disease that has debilitated several lives worldwide, for which diagnostic and therapeutic options are inadequate. The findings underscored the need for future studies, clinical trials, improved education, mass communication campaigns, policies, and funding to reduce the future burden of long COVID.

Journal reference: