Tag Archives: Cell

Inhibition of cell wall formation arrests staphylococcal cell division

We still do not understand exactly how antibiotics kill bacteria. However, this understanding is necessary if we want to develop new antibiotics. And that is precisely what is urgently needed, because bacteria are currently showing more and more resistance to existing antibiotics. Therefore, researchers from the University Hospital Bonn (UKB) and the University of Bonn used high-performance microscopes to observe the effect of different antibiotics on the cell division of Staphylococcus aureus. They found that the biosynthesis of peptidoglycan, core component of the bacterial cell wall, is the driving force during the entire process of cell division. In addition, they clarified how exactly different antibiotics block cell division within a few minutes. The results have now been published in the journal Science Advances.

The bacterial cell wall maintains the shape and integrity of unicellular organisms. Cell wall synthesis plays a key role in bacterial growth: the cell division protein FtsZ forms the so-called Z-ring in the center of the cell, thus initiating the division process. A new cell wall is formed there, for which peptidoglycan is produced as the core component. This constriction thus gives rise to two identical daughter cells.

Fluorescent proteins in Staphylococcus aureus under the microscope

The UKB research team led by Fabian Grein and Tanja Schneider, together with the team led by Ulrich Kubitscheck, Professor of Biophysical Chemistry at the University of Bonn, selected the bacterium Staphylococcus aureus, one of the most dangerous human pathogenic bacteria, as the model organism for their study. The focus was on the influence of antibiotics that inhibit peptidoglycan synthesis on cell division.

We found a rapid and strong effect of oxacillin and the glycopeptide antibiotics vancomycin and telavacin on cell division. The cell division protein FtsZ served as a marker here and we monitored it.”

Jan-Samuel Puls, a PhD student at the Institute of Pharmaceutical Microbiology at UKB

For this purpose, FtsZ was fluorescently labeled alongside other proteins. Then the researchers analyzed the effects on individual living bacterial cells over time and also used super-resolution microscopy. They established an automated image analysis for microscopy images that allowed them to quickly analyze all cells in the sample under study. “Staphylococcus aureus is only about one micrometer, which is one-thousandth of a millimeter. This makes microscopy particularly challenging,” says Dr. Fabian Grein, junior research group leader at the UKB’s Institute of Pharmaceutical Microbiology and a scientist at the German Center for Infection Research (DZIF).

Antibiotic effect on cell wall biosynthesis machinery inhibits cell division immediately

The Bonn research team found that the formation of peptidoglycan is the driving force during the entire process of cell division. Previously, peptidoglycan synthesis was thought to be essential only during a specific part of this process. The team showed that inhibition of cell wall assembly by glycopeptide antibiotics in Staphylococcus aureus occurs rapidly and with a dramatic effect on cell division. In addition, they clarified in detail the specific role of essential penicillin-binding protein 2 (PBP2), which links cell wall components, in cell division. The β-lactam antibiotic oxacillin prevents the proper localization of this protein. “This means that PBP2 does not get to the place where it is needed. As a result, the cell can’t divide,” Grein says. “Importantly, this all happens immediately after the antibiotics are added. So the first cellular effects, which have not been studied very intensively so far, are crucial.” Therefore, in view of the alarming increase in antibiotic resistance worldwide, he hopes the study results will provide a better understanding of how exactly these agents work at the cellular level, and thus a key to the development of new antibiotics. Understanding cellular mechanisms of antibiotic action and production is the goal of the DFG Collaborative Research Center TRR 261 “Antibiotic CellMAP”, which conducted these studies.

Source:
Journal reference:

Puls, J.-S., et al. (2023). Inhibition of peptidoglycan synthesis is sufficient for total arrest of staphylococcal cell division. Science Advances. doi.org/10.1126/sciadv.ade9023

Novel subset of memory B cells predicts long-lived antibody responses to influenza vaccination

Memory B cells play a critical role to provide long-term immunity after a vaccination or infection. In a study published in the journal Immunity, researchers describe a distinct and novel subset of memory B cells that predict long-lived antibody responses to influenza vaccination in humans.

These effector memory B cells appear to be poised for a rapid serum antibody response upon secondary challenge one year later, Anoma Nellore, M.D., Fran Lund, Ph.D., and colleagues at the University of Alabama at Birmingham and Emory University report. Evidence from transcriptional and epigenetic profiling shows that the cells in this subset differ from all previously described memory B cell subsets.

The UAB researchers identified the novel subset by the presence of FcRL5 receptor protein on the cell surface. In immunology, a profusion of different cell-surface markers is used to identify and separate immune-cell types. In the novel memory B cell subset, FcRL5 acts as a surrogate marker for positive expression of the T-bet transcription factor inside the cells. Various transcription factors act as master regulators to orchestrate the expression of many different gene sets as various cell types grow and differentiate.

Nellore, Lund and colleagues found that the FcRL5+ T-bet+ memory B cells can be detected seven days after immunization, and the presence of these cells correlates with vaccine antibody responses months later. Thus, these cells may represent an early, easily monitored cellular compartment that can predict the development of a long-lived antibody response to vaccines.

This could be a boon to the development of a more effective yearly influenza vaccine. “New annual influenza vaccines must be tested, and then manufactured, months in advance of the winter flu season,” Lund said. “This means we must make an educated guess as to which flu strain will be circulating the next winter.”

Why are vaccine candidates made so far in advance? Pharmaceutical companies, Lund says, need to wait many weeks after vaccinating volunteers to learn whether the new vaccine elicits a durable immune response that will last for months. “One potential outcome of the current study is we may have identified a new way to predict influenza vaccine durability that would give us an answer in days, rather than weeks or months,” Lund said. “If so, this type of early ‘biomarker’ could be used to test flu vaccines closer to flu season -; and moving that timeline might give us a better shot at predicting the right flu strain for the new annual vaccine.”

Seasonal flu kills 290,000 to 650,000 people each year, according to World Health Organization estimates. The global flu vaccine market was more than $5 billion in 2020.

To understand the Immunity study, it is useful to remember what happens when a vaccinated person subsequently encounters a flu virus.

Following exposure to previously encountered antigens, such as the hemagglutinin on inactivated influenza in flu vaccines, the immune system launches a recall response dominated by pre-existing memory B cells that can either produce new daughter cells or cells that can rapidly proliferate and differentiate into short-lived plasmablasts that produce antibodies to decrease morbidity and mortality. These latter B cells are called “effector” memory B cells.

“The best vaccines induce the formation of long-lived plasma cells and memory B cells,” said Lund, the Charles H. McCauley Professor in the UAB Department of Microbiology and director of the Immunology Institute. “Plasma cells live in your bone marrow and make protective antibodies that can be found in your blood, while memory B cells live for many years in your lymph nodes and in tissues like your lungs.

“Although plasma cells can survive for decades after vaccines like the measles vaccine, other plasma cells wane much more quickly after vaccination, as is seen with COVID-19,” Lund said. “If that happens, memory B cells become very important because these long-lived cells can rapidly respond to infection and can quickly begin making antibody.”

In the study, the UAB researchers looked at B cells isolated from blood of human volunteers who received flu vaccines over a span of three years, as well as B cells from tonsil tissue obtained after tonsillectomies.

They compared naïve B cells, FcRL5+ T-bet+ hemagglutinin-specific memory B cells, FcRL5neg T-betneg hemagglutinin-specific memory B cells and antibody secreting B cells, using standard phenotype profiling and single-cell RNA sequencing. They found that the FcRL5+ T-bet+ hemagglutinin-specific memory B cells were transcriptionally similar to effector-like memory cells, while the FcRL5neg T-betneg hemagglutinin-specific memory B cells exhibited stem-like central memory properties.

Antibody-secreting B cells need to produce a lot of energy to churn out antibody production, and they also must turn on processes that protect the cells from some of the detrimental side effects of that intense metabolism, including controlling the dangerous reactive oxygen species and boosting the unfolded protein response.

The FcRL5+ T-bet+ hemagglutinin-specific memory B cells did not express the plasma cell commitment factor, but did express transcriptional, epigenetic and metabolic functional programs that poised these cells for antibody production. These included upregulated genes for energy-intensive metabolic processes and cellular stress responses.

Accordingly, FcRL5+ T-bet+ hemagglutinin-specific memory B cells at Day 7 post-vaccination expressed intracellular immunoglobulin, a sign of early transition to antibody-secreting cells. Furthermore, human tonsil-derived FcRL5+ T-bet+ memory B differentiated more rapidly into antibody-secreting cells in vitro than did FcRL5neg T-betneg hemagglutinin-specific memory B cells.

Lund and Nellore, an associate professor in the UAB Department of Medicine Division of Infectious Diseases, are co-corresponding authors of the study, “A transcriptionally distinct subset of influenza-specific effector memory B cells predicts long-lived antibody responses to vaccination in humans.”

Co-authors with Lund and Nellore are Esther Zumaquero, R. Glenn King, Betty Mousseau, Fen Zhou and Alexander F. Rosenberg, UAB Department of Microbiology; Christopher D. Scharer, Tian Mi, Jeremy M. Boss, Christopher M. Tipton and Ignacio Sanz, Emory University School of Medicine, Atlanta, Georgia; Christopher F. Fucile, UAB Informatics Institute; John E. Bradley and Troy D. Randall, UAB Department of Medicine, Division of Clinical Immunology and Rheumatology; and Stuti Mutneja and Paul A. Goepfert, UAB Department of Medicine Division of Infectious Diseases.

Funding for the work came from National Institutes of Health grants AI125180, AI109962 and AI142737 and from the UAB Center for Clinical and Translational Science.

Source:
Journal reference:

Nellore, A., et al. (2023). A transcriptionally distinct subset of influenza-specific effector memory B cells predicts long-lived antibody responses to vaccination in humans. Immunity. doi.org/10.1016/j.immuni.2023.03.001.

Co-infection with MRSA ‘superbug’ could make COVID-19 outcomes even more deadly

Global data shows nearly 10 per cent of severe COVID-19 cases involve a secondary bacterial co-infection – with Staphylococcus aureus, also known as Staph A., being the most common organism responsible for co-existing infections with SARS-CoV-2. Researchers at Western have found if you add a ‘superbug’ – methicillin-resistant Staphylococcus aureus (MRSA) – into the mix, the COVID-19 outcome could be even more deadly.

The mystery of how and why these two pathogens, when combined, contribute to the severity of the disease remains unsolved. However, a team of Western researchers has made significant progress toward solving this “whodunit”.

New research by Mariya Goncheva, Richard M. Gibson, Ainslie C. Shouldice, Jimmy D. Dikeakos and David E. Heinrichs, has revealed that IsdA, a protein found in all strains of Staph A., enhanced SARS-CoV-2 replication by 10- to 15-fold. The findings of this study are significant and could help inform the development of new therapeutic approaches for COVID-19 patients with bacterial co-infections.

Interestingly, the study, which was recently published in iScience, also showed that SARS-CoV-2 did not affect the bacteria’s growth. This was contrary to what the researchers had initially expected.

We started with an assumption that SARS-CoV-2 and hospitalization due to COVID-19 possibly caused patients to be more susceptible to bacterial infections which eventually resulted in worse outcomes.”

Mariya Goncheva

Goncheva is a former postdoctoral associate, previously with the department of microbiology and immunology at Schulich School of Medicine & Dentistry.

Goncheva said bacterial infections are most commonly acquired in hospital settings and hospitalization increases the risk of co-infection. “Bacterial infections are one of the most significant complications of respiratory viral infections such as COVID-19 and Influenza A. Despite the use of antibiotics, 25 per cent of patients co-infected with SARS-CoV-2 and bacteria, die as a result. This is especially true for patients who are hospitalized, and even more so for those in intensive care units. We were interested in finding why this happens,” said Goncheva, lead investigator of the study.

Goncheva, currently Canada Research Chair in virology and professor of biochemistry and microbiology at the University of Victoria, studied the pathogenesis of multi-drug resistant bacteria (such as MRSA) supervised by Heinrichs, professor of microbiology and immunology at Schulich Medicine & Dentistry.

When the COVID-19 pandemic hit, she pivoted to study interactions between MRSA and SARS-CoV-2.

For this study, conducted at Western’s level 3 biocontainment lab, Imaging Pathogens for Knowledge Translation (ImPaKT), Goncheva’s work created an out-of-organism laboratory model to study the interactions between SARS-CoV-2 and MRSA, a difficult-to-treat multi-drug resistant bacteria.

“At the beginning of the pandemic, the then newly opened ImPaKT facility made it possible for us to study the interactions between live SARS-CoV-2 virus and MRSA. We were able to get these insights into molecular-level interactions due to the technology at ImPaKT,” said Heinrichs, whose lab focuses on MRSA and finding drugs to treat MRSA infections. “The next step would be to replicate this study in relevant animal models.”

Source:
Journal reference:

Goncheva, M. I., et al. (2023). The Staphylococcus aureus protein IsdA increases SARS CoV-2 replication by modulating JAK-STAT signaling. IScience. doi.org/10.1016/j.isci.2023.105975.

Vaginal sex can shape the composition of urethral microbiome in healthy men

Contrary to common beliefs, your urine is not germ free. In fact, a new study shows that the urethra of healthy men is teeming with microbial life and that a specific activity-;vaginal sex-;can shape its composition. The research, published March 24 in the journal Cell Reports Medicine, provides a healthy baseline for clinicians and scientists to contrast between healthy and diseased states of the urethra, an entrance to the urinary and reproductive systems.

We know where bugs in the gut come from; they primarily come from our surroundings through fecal-oral transfer. But where does genital microbiology come from?”

David Nelson, co-senior author, microbiologist at Indiana University

To flush out the answer, the team of microbiologists, statisticians, and physicians sequenced the penile urethra swabs of 110 healthy adult men. These participants had no urethral symptoms or sexually transmitted infections (STIs) and no inflammation of the urethra. DNA sequencing results revealed that two types of bacterial communities call the penile urethra home-;one native to the organ, the other from a foreign source.

“It is important to set this baseline,” says co-senior author Qunfeng Dong, a bioinformatician at Loyola University Chicago. “Only by understanding what health is can we define what diseases are.”

The researchers found that most of the healthy men had a simple, sparse community of oxygen-loving bacteria in the urethra. In addition, these bacteria probably live close to the urethral opening at the tip of the penis, where there is ample oxygen. The consistent findings of these bacteria suggest that they are the core community that supports penile urethra health.

But some of the men also had a more complex secondary group of bacteria that are often found in the vagina and can disturb the healthy bacterial ecosystem of the vagina. The team speculates that these bacteria reside deeper in the penile urethra because they thrive in oxygen-scarce settings. Only men who reported having vaginal sex carry these bacteria, hinting at the microbes’ origins.

Delving into the participant’s sexual history, the team found a close link between this second bacterial community and vaginal sex but not other sexual behaviors, such as oral sex and anal sex. They also found evidence that vaginal sex has lasting effects. Vagina-associated bacteria remained detectable in the participants for at least two months after vaginal sex, indicating that sexual exposure to the vagina can reshape the male urinary-tract microbiome.

“In our study, one behavior explains 10% of the overall bacterial variation,” says Nelson, when discussing the influence of vaginal sex. “The fact that a specific behavior is such a strong determinant is just profound.”

Although current findings from the study show that vaginal bacteria can spread to the penile urethra, the team’s next plan is to test whether the reverse is true. Using the newly established baseline, the researchers also hope to offer new insights into bacteria’s role in urinary- and reproductive-tract diseases, including unexplained urethral inflammation and STIs.

“STIs really impact people who are socioeconomically disadvantaged; they disproportionately impact women and minorities,” says Nelson. “It’s a part of health care that’s overlooked because of stigma. I think our study has a potential to dramatically change how we handle STI diagnosis and management in a positive way.”

This work was supported by the National Institute of Allergy and Infectious Diseases.

Source:
Journal reference:

Toh, E., et al. (2023). Sexual behavior shapes male genitourinary microbiome composition. Cell Reports Medicine. doi.org/10.1016/j.xcrm.2023.100981

Leaving lymph nodes intact until after immunotherapy could boost efficacy against solid tumors

Cancer treatment routinely involves taking out lymph nodes near the tumor in case they contain metastatic cancer cells. But new findings from a clinical trial by researchers at UC San Francisco and Gladstone Institutes shows that immunotherapy can activate tumor-fighting T cells in nearby lymph nodes.

The study, published March 16, 2023 in Cell, suggests that leaving lymph nodes intact until after immunotherapy could boost efficacy against solid tumors, only a small fraction of which currently respond to these newer types of treatments.

Most immunotherapies are aimed only at reinvigorating T cells in the tumor, where they often become exhausted battling the tumor’s cancer cells. But the new research shows that allowing the treatment to activate the immune response of the lymph nodes as well can play an important role in driving positive response to immunotherapy.

This work really changes our thinking about the importance of keeping lymph nodes in the body during treatment.”

Matt Spitzer, PhD, investigator for the Parker Institute for Cancer Immunotherapy and Gladstone-UCSF Institute of Genomic Immunology and senior author of the study

Lymph nodes are often removed because they are typically the first place metastatic cancer cells appear, and without surgery, it can be difficult to determine whether the nodes contain metastases.

“Immunotherapy is designed to jump start the immune response, but when we take out nearby lymph nodes before treatment, we’re essentially removing the key locations where T cells live and can be activated,” Spitzer said, noting that the evidence supporting the removal of lymph nodes is from older studies that predate the use of today’s immunotherapies.

Aim for the lymph nodes, not the tumor

Researchers have largely been working under the assumption that cancer immunotherapy works by stimulating the immune cells within the tumor, Spitzer said. But in a 2017 study in mice, Spitzer showed that immunotherapy drugs are actually activating the lymph nodes.

“That study changed our understanding of how these therapies might be working,” said Spitzer. Rather than the immunotherapy pumping up the T cells in the tumor, he said, T cells in the lymph nodes are likely the source for T cells circulating in the blood. Such circulating cells can then go into the tumor and kill off the cancer cells.

Having shown that intact lymph nodes can temper cancer’s hold in mice, Spitzer’s team wanted to know whether the same would prove true in human patients. They chose to design a trial for patients with head and neck cancers because of the high number of lymph nodes in those areas.

The trial enrolled 12 patients whose tumors hadn’t yet metastasized past the lymph nodes. Typically, such patients would undergo surgery to remove the tumor, followed by other treatments if recommended.

Instead, patients received a single cycle of an immunotherapy drug called atezolizumab (anti-PD-L1) that is produced by Genentech, a sponsor of the trial. A week or two later, Spitzer’s team measured how much the treatment activated the patients’ immune systems.

The treatment also included surgically removing each patient’s tumor and nearby lymph nodes after immunotherapy and analyzing how the immunotherapy affected them.

The team found that, after immunotherapy, the cancer-killing T cells in the lymph nodes began springing into action. They also found higher numbers of related immune cells in the patients’ blood.

Spitzer attributes some of the trial’s success to its design, which allowed the team to get a lot of information from a small number of patients by looking at the tissue before and after surgery and running detailed analyses.

“Being able to collect the tissue from surgery shortly after the patients had been given the drug was a really unique opportunity,” he said. “We were able to see, at the cellular level, what the drug was doing to the immune response.”

That kind of insight would be challenging to get from a more traditional trial in patients with later-stage disease, who would not typically benefit from undergoing surgery after immunotherapy.

Metastases inhibit immune response

Another benefit of the study design was that it allowed researchers to compare how the treatment affected lymph nodes with and without metastases, or a second cancer growth.

“No one had looked at metastatic lymph nodes in this way before,” said Spitzer. “We could see that the metastases impaired the immune response relative to what we saw in the healthy lymph nodes.”

It could be that the T cells in these metastatic nodes were less activated by the therapy, Spitzer said. If so, that could explain, in part, the poor performance of some immunotherapy treatments.

Still, the therapy prompted enough T-cell activity in the metastatic lymph nodes to consider leaving them in for a short period of time until treatment ends. “Removing lymph nodes with metastatic cancer cells is probably still important but taking them out before immunotherapy treatment may be throwing the baby out with the bathwater,” said Spitzer.

A subsequent goal of the current trial is to determine whether giving immunotherapy before surgery protects against the recurrence of tumors in the future. Researchers won’t know the answer to that until they’ve had a chance to monitor the participants for several years.

“My hope is that if we can activate a good immune response before the tumor is taken out, all those T cells will stay in the body and recognize cancer cells if they come back,” Spitzer said.

Next, the team plans to study better treatments for patients with metastatic lymph nodes, using drugs that would be more effective at reactivating their immune responses.

Source:
Journal reference:

Rahim, M. K., et al. (2023). Dynamic CD8+ T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes. Cell. doi.org/10.1016/j.cell.2023.02.021

Avanced genome editing technology could be used as a one-time treatment for CD3 delta SCID

A new UCLA-led study suggests that advanced genome editing technology could be used as a one-time treatment for the rare and deadly genetic disease CD3 delta severe combined immunodeficiency.

The condition, also known as CD3 delta SCID, is caused by a mutation in the CD3D gene, which prevents the production of the CD3 delta protein that is needed for the normal development of T cells from blood stem cells.

Without T cells, babies born with CD3 delta SCID are unable to fight off infections and, if untreated, often die within the first two years of life. Currently, bone marrow transplant is the only available treatment, but the procedure carries significant risks.

In a study published in Cell, the researchers showed that a new genome editing technique called base editing can correct the mutation that causes CD3 delta SCID in blood stem cells and restore their ability to produce T cells.

The potential therapy is the result of a collaboration between the laboratories of Dr. Donald Kohn and Dr. Gay Crooks, both members of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA and senior authors of the study.

Kohn’s lab has previously developed successful gene therapies for several immune system deficiencies, including other forms of SCID. He and his colleagues turned their attention to CD3 delta SCID at the request of Dr. Nicola Wright, a pediatric hematologist and immunologist at the Alberta Children’s Hospital Research Institute in Canada, who reached out in search of a better treatment option for her patients.

CD3 delta SCID is prevalent in the Mennonite community that migrates between Canada and Mexico.

Because newborns are not screened for SCID in Mexico, I often see babies who have been diagnosed late and are returning to Canada quite sick.”

Dr. Nicola Wright, pediatric hematologist and immunologist at the Alberta Children’s Hospital Research Institute

When Kohn presented Wright’s request to his lab, Grace McAuley, then a research associate who joined the lab at the end of her senior year at UCLA, stepped up with a daring idea.

“Grace proposed we try base editing, a very new technology my lab had never attempted before,” said Kohn, a distinguished professor of microbiology, immunology and molecular genetics, and of pediatrics.

Base editing is an ultraprecise form of genome editing that enables scientists to correct single-letter mutations in DNA. DNA is made up of four chemical bases that are referred to as A, T, C and G; those bases pair together to form the “rungs” in DNA’s double-helix ladder structure.

While other gene editing platforms, like CRISPR-Cas9, cut both strands of the chromosome to make changes to DNA, base editing chemically changes one DNA base letter into another -; an A to a G, for example -; leaving the chromosome intact.

“I had a very steep learning curve in the beginning, when base editing just wasn’t working,” said McAuley, who is now pursuing an M.D.-Ph.D. at UC San Diego and is the study’s co-first author. “But I kept pushing forward. My goal was help get this therapy to the clinic as fast as was safely possible.”

McAuley reached out to the Broad Institute’s David Liu, the inventor of base editing, for advice on how to evaluate the technique’s safety for this particular use. Eventually, McAuley identified a base editor that was highly efficient at correcting the disease-causing genetic mutation.

Because the disease is extremely rare, obtaining patient stem cells for the UCLA study was a significant challenge. The project got a boost when Wright provided the researchers with blood stem cells donated by a CD3 delta SCID patient who was undergoing a bone marrow transplant.

The base editor corrected an average of almost 71% of the patient’s stem cells across three laboratory experiments.

Next, McAuley worked with Dr. Gloria Yiu, a UCLA clinical instructor in rheumatology, to test whether the corrected cells could give rise to T cells. Yiu used artificial thymic organoids, which are stem cell-derived tissue models developed by Crooks’ lab that mimic the environment of the human thymus -; the organ where blood stem cells become T cells.

When the corrected blood stem cells were introduced into the artificial thymic organoids, they produced fully functional and mature T cells.

“Because the artificial thymic organoid supports the development of mature T cells so efficiently, it was the ideal system to show that base editing of patients’ stem cells could fix the defect seen in this disease,” said Yiu, who is also a co-first author of the study.

As a final step, McAuley studied the longevity of the corrected stem cells by transplanting them into a mouse. The corrected cells remained four months after transplant, indicating that base editing had corrected the mutation in true, self-renewing blood stem cells. The findings suggest that corrected blood stem cells could persist long-term and produce the T cells patients would need to live healthy lives.

“This project was a beautiful picture of team science, with clinical need and scientific expertise aligned,” said Crooks, a professor of pathology and laboratory medicine. “Every team member played a vital role in making this work successful.”

The research team is now working with Wright on how to bring the new approach to a clinical trial for infants with CD3 delta SCID from Canada, Mexico and the U.S.

This research was funded by the Jeffrey Modell Foundation, the National Institutes of Health, the Bill and Melinda Gates Foundation, the Howard Hughes Medical Institute, the V Foundation and the A.P. Giannini Foundation.

The therapeutic approach described in this article has been used in preclinical tests only and has not been tested in humans or approved by the Food and Drug Administration as safe and effective for use in humans. The technique is covered by a patent application filed by the UCLA Technology Development Group on behalf of the Regents of the University of California, with Kohn and McAuley listed as co-inventors.

Source:
Journal reference:

McAuley, G.E., et al. (2023) Human T cell generation is restored in CD3δ severe combined immunodeficiency through adenine base editing. Cell. doi.org/10.1016/j.cell.2023.02.027.

SARS-CoV-2 infection damages the CD8+ T cell response to vaccination

The magnitude and quality of a key immune cell’s response to vaccination with two doses of the Pfizer-BioNTech COVID-19 vaccine were considerably lower in people with prior SARS-CoV-2 infection compared to people without prior infection, a study has found. In addition, the level of this key immune cell that targets the SARS-CoV-2 spike protein was substantially lower in unvaccinated people with COVID-19 than in vaccinated people who had never been infected. Importantly, people who recover from SARS-CoV-2 infection and then get vaccinated are more protected than people who are unvaccinated. These findings, which suggest that the virus damages an important immune-cell response, were published today in the journal Immunity.

The study was co-funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and led by Mark M. Davis, Ph.D. Dr. Davis is the director of the Stanford Institute for Immunity, Transplantation and Infection and a professor of microbiology and immunology at Stanford University School of Medicine in Palo Alto, California. He is also a Howard Hughes Medical Institute Investigator.

Dr. Davis and colleagues designed a very sensitive tool to analyze how immune cells called CD4+ T cells and CD8+ T cells respond to SARS-CoV-2 infection and vaccination. These cells coordinate the immune system’s response to the virus and kill other cells that have been infected, helping prevent COVID-19. The tool was designed to identify T cells that target any of dozens of specific regions on the virus’s spike protein as well as some other viral regions. The Pfizer-BioNTech vaccine uses parts of the SARS-CoV-2 spike protein to elicit an immune response without causing infection.

The investigators studied CD4+ and CD8+ T-cell responses in blood samples from three groups of volunteers. One group had never been infected with SARS-CoV-2 and received two doses of the Pfizer-BioNTech COVID-19 vaccine. The second group had previously been infected with SARS-CoV-2 and received two doses of the vaccine. The third group had COVID-19 and was unvaccinated.

The researchers found that vaccination of people who had never been infected with SARS-CoV-2 induced robust CD4+ and CD8+ T-cell responses to the virus’ spike protein. In addition, these T cells produced multiple types of cell-signaling molecules called cytokines, which recruit other immune cells—including antibody-producing B cells—to fight pathogens. However, people who had been infected with SARS-CoV-2 prior to vaccination produced spike-specific CD8+ T cells at considerably lower levels—and with less functionality—than vaccinated people who had never been infected. Moreover, the researchers observed substantially lower levels of spike-specific CD8+ T cells in unvaccinated people with COVID-19 than in vaccinated people who had never been infected.

Taken together, the investigators write, these findings suggest that SARS-CoV-2 infection damages the CD8+ T cell response, an effect akin to that observed in earlier studies showing long-term damage to the immune system after infection with viruses such as hepatitis C or HIV. The new findings highlight the need to develop vaccination strategies to specifically boost antiviral CD8+ T cell responses in people previously infected with SARS-CoV-2, the researchers conclude.  

Source:
Journal reference:

Gao, F., et al. (2023). Robust T cell responses to Pfizer/BioNTech vaccine compared to infection and evidence of attenuated peripheral CD8+ T cell responses due to COVID-19. Immunity. doi.org/10.1016/j.immuni.2023.03.005.

Decreased viral infection severity in females may be due to extra copy of X chromosome-linked gene

It has long been known that viral infections can be more severe in males than females, but the question as to why has remained a mystery – until possibly now. The key may lie in an epigenetic regulator that boosts the activity of specialized anti-viral immune cells known as natural killer (NK) cells.

In a study published March 16 in the peer-reviewed journal Nature Immunology, a collaborative team of UCLA researchers have found that female mouse and human NK cells have an extra copy of an X chromosome-linked gene called UTX. UTX acts as an epigenetic regulator to boost NK cell anti-viral function, while repressing NK cell numbers.

While it is well-known that males have more NK cells compared to females, we did not understand why the increased number of NK cells was not more protective during viral infections. It turns out that females have more UTX in their NK cells than do males, which allows them to fight viral infections more efficiently.”

Dr. Maureen Su, co-senior author, professor of microbiology immunology and molecular genetics, and of pediatrics, at the David Geffen School of Medicine at UCLA

The researchers noted that this held true whether or not the mice had gonads (ovaries in females; testes in males), indicating that the observed trait was not linked to hormones. Furthermore, female mice with lower UTX expression had more NK cells which were not as capable of controlling viral infection.

“This implicates UTX as a critical molecular determinant of sex differences in NK cells,” said the study’s lead author Mandy Cheng, graduate student in molecular biology at UCLA.

The findings suggest that therapies involving immune responses need to move beyond a “one-size-fits-all” approach and toward a precision medicine model, also known as personalized medicine, that tailors treatments that take into account people’s individual differences, such as genetics, environment and other factors that influence health and disease risk, the researchers write.

“Given the recent excitement with using NK cells in the clinic, we will need to incorporate sex as a biological factor in treatment decisions and immunotherapy design,” said co-senior author Tim O’Sullivan, assistant professor of microbiology, immunology and molecular genetics at the Geffen School.

Source:
Journal reference:

Cheng, M.I., et al. (2023) The X-linked epigenetic regulator UTX controls NK cell-intrinsic sex differences. Nature Immunology. doi.org/10.1038/s41590-023-01463-8.

Host immune system forms small lesions in the intestines in response to bacterial infection

Yersinia bacteria cause a variety of human and animal diseases, the most notorious being the plague, caused by Yersinia pestis. A relative, Yersinia pseudotuberculosis, causes gastrointestinal illness and is less deadly but naturally infects both mice and humans, making it a useful model for studying its interactions with the immune system.

These two pathogens, as well as a third close cousin, Y. enterocolitica, which affects swine and can cause food-borne illness if people consume infected meat, have many traits in common, particularly their knack for interfering with the immune system’s ability to respond to infection.

The plague pathogen is blood-borne and transmitted by infected fleas. Infection with the other two depends on ingestion. Yet the focus of much of the work in the field had been on interactions of Yersinia with lymphoid tissues, rather than the intestine. A new study of Y. pseudotuberculosis led by a team from Penn’s School of Veterinary Medicine and published in Nature Microbiology demonstrates that, in response to infection, the host immune system forms small, walled-off lesions in the intestines called granulomas. It’s the first time these organized collections of immune cells have been found in the intestines in response to Yersinia infections.

The team went on to show that monocytes, a type of immune cell, sustain these granulomas. Without them, the granulomas deteriorated, allowing the mice to be overtaken by Yersinia.

“Our data reveal a previously unappreciated site where Yersinia can colonize and the immune system is engaged,” says Igor Brodsky, senior author on the work and a professor and chair of pathobiology at Penn Vet. “These granulomas form in order to control the bacterial infection in the intestines. And we show that if they don’t form or fail to be maintained, the bacteria are able to overcome the control of the immune system and cause greater systemic infection.”

The findings have implications for developing new therapies that leverage the host immune system, Brodsky says. A drug that harnessed the power of immune cells to not only keep Yersinia in check but to overcome its defenses, they say, could potentially eliminate the pathogen altogether.

A novel battlefield

Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica share a keen ability to evade immune detection.

“In all three Yersinia infections, a hallmark is that they colonize lymphoid tissues and are able to escape immune control and replicate, cause disease, and spread,” Brodsky says.

Earlier studies had shown that Yersinia prompted the formation of granulomas in the lymph nodes and spleen but had never observed them in the intestines until Daniel Sorobetea, a research fellow in Brodsky’s group, took a closer look at the intestines of mice infected with Y. pseudotuberculosis.

“Because it’s an orally acquired pathogen, we were interested in how the bacteria behaved in the intestines,” Brodsky says. “Daniel made this initial observation that, following Yersinia pseudotuberculosis infection, there were macroscopically visible lesions all along the length of the gut that had never been described before.”

The research team, including Sorobetea and later Rina Matsuda, a doctoral student in the lab, saw that these same lesions were present when mice were infected with Y. enterocolitica, forming within five days after an infection.

A biopsy of the intestinal tissues confirmed that the lesions were a type of granuloma, known as a pyogranuloma, composed of a variety of immune cells, including monocytes and neutrophils, another type of white blood cell that is part of the body’s front line in fighting bacteria and viruses.

Granulomas form in other diseases that involve chronic infection, including tuberculosis, for which Y. pseudotuberculosis is named. Somewhat paradoxically, these granulomas-;while key in controlling infection by walling off the infectious agent-;also sustain a population of the pathogen within those walls.

The team wanted to understand how these granulomas were both formed and maintained, working with mice lacking monocytes as well as animals treated with an antibody that depletes monocytes. In the animals lacking monocytes “these granulomas, with their distinct architecture, wouldn’t form,” Brodsky says.

Instead, a more disorganized and necrotic abscess developed, neutrophils failed to be activated, and the mice were less able to control the invading bacteria. These animals experienced higher levels of bacteria in their intestines and succumbed to their infections.

Groundwork for the future

The researchers believe the monocytes are responsible for recruiting neutrophils to the site of infection and thus launching the formation of the granuloma, helping to control the bacteria. This leading role for monocytes may exist beyond the intestines, the researchers believe.

We hypothesize that it’s a general role for the monocytes in other tissues as well.”

Igor Brodsky, senior author

But the discoveries also point to the intestines as a key site of engagement between the immune system and Yersinia.

“Previous to this study we knew of Peyer’s patches to be the primary site where the body interacts with the outside environment through the mucosal tissue of the intestines,” says Brodsky. Peyer’s patches are small areas of lymphoid tissue present in the intestines that serve to regulate the microbiome and fend off infection.

In future work, Brodsky and colleagues hope to continue to piece together the mechanism by which monocytes and neutrophils contain the bacteria, an effort they’re pursing in collaboration with Sunny Shin’s lab in the Perelman School of Medicine’s microbiology department.

A deeper understanding of the molecular pathways that regulate this immune response could one day offer inroads into host-directed immune therapies, by which a drug could tip the scales in favor of the host immune system, unleashing its might to fully eradicate the bacteria rather than simply corralling them in granulomas.

“These therapies have caused an explosion of excitement in the cancer field,” Brodsky says, “the idea of reinvigorating the immune system. Conceptually we can also think about how to coax the immune system to be reinvigorated to attack pathogens in these settings of chronic infection as well.”

Source:
Journal reference:

Sorobetea, D., et al. (2023). Inflammatory monocytes promote granuloma control of Yersinia infection. Nature Microbiology. doi.org/10.1038/s41564-023-01338-6.

New discoveries made regarding autism onset in mouse models

Although autism is a common neurodevelopmental disorder, the multiple factors behind its onset are still not fully understood. Animal models of idiopathic autism, especially mice, are often used to help researchers understand the complicated mechanisms behind the disorder, with BTBR/J being the most commonly used mouse model in the world.

Now, an international research collaboration including Kobe University’s Professor TAKUMI Toru and Researcher Chia-wen Lin et al. have made new discoveries regarding autism onset in mouse models.

In their detailed series of experiments and analyses of BTBR/J mice and the other subspecies BTBR/R, they revealed that endogenous retrovirus activation increases a fetus’s susceptibility to autism. They also discovered that BTBR/R exhibits autistic-like behaviors without reduced learning ability, making it a more accurate model of autism than the widely-used BTBR/J model.

It is hoped that further research will contribute towards better classification of autism types, as well as the creation of new treatment strategies for neurodevelopmental disorders.

These research results were published in Molecular Psychiatry on March 7, 2023

Main points

  • The researchers analyzed BTBR/J, a widely used mouse model of autism, and its subspecies BTBR/Rusing MRI. This revealed that the corpus callosum, which connects the left and right hemispheres of the brain, was impaired in BTBR/J mice but not in BTBR/R mice.
  • Genome and transcription analysis showed that BTBR mice have increased levels of endogenous retrovirus genes.
  • Furthermore, single-cell RNA analysis of BTBR/R mice revealed changes in the expression of various genes (including stress response genes) that are indicative of endogenous retrovirus activation.
  • Even though BTBR/J and BTBR/R mice have the same ancestry, the results of various behavioral analysis experiments revealed differences in spatial learning ability and other behaviors between the two types of model mice.

Research background

Autism (autism spectrum disorder) is a neurodevelopmental disorder that remains largely unexplored despite the rapidly increasing number of patients. Reasons for this continuing increase in people diagnosed with autism include changes to diagnostic criteria and older fathers becoming more common. Autism is strongly related to genetic factors and can be caused by abnormalities in DNA structure, such as copy number variations. Animal models, especially mice, are often used in research to illuminate the pathology of autism. Among these models, BTBR/J is a mouse model of the natural onset of autism that is commonly used. Studies have reported various abnormalities in BTBR/J mice including impairment of the corpus callosum (which connects the left and right hemispheres of the brain) and excessive immune system signaling. However, it is not fully understood why this particular lineage displays autistic-like behavioral abnormalities.

The aim of the current study was to shed light on the onset mechanism of these autistic-like behavioral abnormalities by conducting comparative analysis on BTBR/J and its subspecies BTBR/R.

Research findings

First of all, the researchers conducted MRI scans on BTBR/J and BTBR/R mice to investigate structural differences in each region of the brain. The results revealed that there were differences between BTBR/J and BTBR/R mice in 33 regions including the amygdala. A particularly prominent difference discovered was that even though BTBR/J’s corpus callosum is impaired, BTBR/R’s is normal.

Next, the research group used the array CGH method to compare BTBR/R’s copy number variations with that of a normal mouse model (B6). They revealed that BTBR/R mice had significantly increased levels of endogenous retroviruses (ERV) in comparison to B6 mice. Furthermore, qRT-PCR tests revealed that these retroviruses were activated in BTBR/R mice. On the other hand, in B6 mice there was no change in the expression of LINE ERV (which is classified in the same repetitive sequence), indicating that this retroviral activation is specific to BTBR.

Subsequently, the researchers carried out single-cell RNA analysis on the tissue of embryonic BTBR mice (on the AGM and yolk sac). The results provide evidence of ERV activation in BTBR mice, as expression changes were observed in a group of genes downstream of ERV.

Lastly, the researchers comprehensively investigated the differences between BTBR/J and BTBR/R on a behavioral level. BTBR/R mice were less anxious than BTBR/J and showed qualitative changes in ultrasound vocalizations, which are measured as a way to assess communicative ability in mice. BTBR/R mice also exhibited more self-grooming behaviors and buried more marbles in the marble burying test. These two tests were designed to detect repetitive behavioral abnormalities in autistic individuals. From the results, it was clear that BTBR/R exhibits more repetitive behaviors (i.e. it is more symptomatic) than BTBR/J. The 3-chamber social interaction test, which measures how closely a mouse will approach another mouse, also revealed more pronounced social deficits in BTBR/R than BTBR/J mice (Figure 4i). In addition, a Barnes maze was used to conduct a spatial learning test, in which BTBR/J mice exhibited reduced learning ability compared to B6 (normal mice). BTBR/R mice, on the other hand, exhibited similar ability to B6.

Overall, the study revealed that retrovirus activation causes the copy number variants in BTBR mice to increase, which leads to the differences in behavior and brain structure seen in BTBR/J and BTBR/R mice (Figure 5).

Further developments

BTBR/J mice are widely used by researchers as a mouse model of autism. However, the results of this study highlight the usefulness of the other lineage of BTBR/R mice because they exhibit autistic-like behavior without compromised spatial learning ability. The results also suggest that it may be possible to develop new treatments for autism that suppress ERV activation. Furthermore, it is necessary to classify autism subtypes according to their onset mechanism, which is a vital first step towards opening up new avenues of treatment for autism.

Source:
Journal reference:

Lin, C-W., et al. (2023) An old model with new insights: endogenous retroviruses drive the evolvement toward ASD susceptibility and hijack transcription machinery during development. Molecular Psychiatry. doi.org/10.1038/s41380-023-01999-z.