Tag Archives: CRISPR

New tool shows early promise to help reduce the spread of antimicrobial resistance

A new tool which could help reduce the spread of antimicrobial resistance is showing early promise, through exploiting a bacterial immune system as a gene editing tool.

Antimicrobial resistance is a major global threat, with nearly five million deaths annually resulting from antibiotics failing to treat infection, according to the World Health Organisation.

Bacteria often develop resistance when resistant genes are transported between hosts. One way that this occurs is via plasmids – circular strands of DNA, which can spread easily between bacteria, and swiftly replicate. This can occur in our bodies, and in environmental settings, such as waterways.

The Exeter team harnessed the CRISPR-Cas gene editing system, which can target specific sequences of DNA, and cuts through them when they are encountered. The researchers engineered a plasmid which can specifically target the resistance gene for Gentamicin – a commonly used antibiotic.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

In laboratory experiments, the new research, published in Microbiology, found that the plasmid protected its host cell from developing resistance. Furthermore, researchers found that the plasmid effectively targeted antimicrobial-resistant genes in hosts to which it transferred, reversing their resistance.

Antimicrobial resistance threatens to outstrip covid in terms of the number of global deaths. We urgently need new ways to stop resistance spreading between hosts. Our technology is showing early promise to eliminate resistance in a wide range of different bacteria. Our next step is to conduct experiments in more complex microbial communities. We hope one day it could be a way to reduce the spread of antimicrobial resistance in environments such as sewage treatment plants, which we know are breeding grounds for resistance.”

David Walker-Sünderhauf, Lead Author, University of Exeter

The research is supported by GW4, the Medical Research Council, the Lister Institute, and JPI-AMR.

Source:
Journal reference:

Walker-Sünderhauf, D., et al. (2023) Removal of AMR plasmids using a mobile, broad host-range, CRISPR-Cas9 delivery tool. Microbiology. doi.org/10.1099/mic.0.001334.

Novel gene-editing strategy harnesses an unusual protective ability to eliminate HIV-1 infection

Genetic alterations that give rise to a rare, fatal disorder known as MOGS-CDG paradoxically also protect cells against infection by viruses. Now, scientists at the Lewis Katz School of Medicine at Temple University have harnessed this unusual protective ability in a novel gene-editing strategy aimed at eliminating HIV-1 infection with no adverse effects on cell mortality.

The new approach, described online April 28 in the journal Molecular Therapy – Nucleic Acids, is based on a combination of two gene-editing constructs, one that targets HIV-1 DNA and one that targets a gene called MOGS – defects in which cause MOGS-CDG. In cells from persons infected with HIV-1, the Temple researchers show that disrupting the virus’s DNA while also deliberately altering MOGS blocks the production of infectious HIV-1 particles. The discovery opens up new avenues in the development of a cure for HIV/AIDS.

Proper MOGS function is essential for glycosylation, a process by which some cellular proteins synthesized in the body are modified to make them stable and functional. Glycosylation, however, is leveraged by certain kinds of infectious viruses. In particular, viruses like HIV, influenza, SARS-CoV-2, and hepatitis C, which are surrounded by a viral envelope, rely on glycosylated proteins to enter host cells.

In the new study, lead investigators Kamel Khalili, PhD, Laura H. Carnell Professor and Chair of the Department of Microbiology, Immunology, and Inflammation, Director of the Center for Neurovirology and Gene Editing, and Director of the Comprehensive NeuroAIDS Center at the Lewis Katz School of Medicine, and Rafal Kaminski, PhD, Assistant Professor at the Center for Neurovirology and Gene Editing at the Lewis Katz School of Medicine designed a genetic approach to exclusively turn on CRISPR to impede MOGS gene expression through DNA editing within immune cells that harbor replication competent, HIV-1. Their novel approach is expected to avoid any impact on the health of uninfected cells that retain normal MOGS gene function. Stimulation of the apparatus in HIV-1 infected cells disrupted the glycan structure of the HIV-1 envelope protein, culminating in the production of non-infectious virus particles.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

“This approach is conceptually very interesting,” said Dr. Khalili, who is also senior investigator on the new study. “By mitigating the ability of the virus to enter cells, which requires glycosylation, MOGS may offer another target, in addition to the integrated viral DNA for developing the next generation of CRISPR gene-editing technology for HIV elimination.”

Dr. Kaminski, Dr. Khalili, and Tricia H. Burdo, PhD, Professor and Vice Chair in the Department of Microbiology, Immunology, and Inflammation and the Center for Neurovirology and Gene Editing at Temple and an expert in the use of non-human primate models for HIV-1, have been working together to further assess the efficacy and safety of CRISPR-MOGS strategy in preclinical studies. In previous work, the team demonstrated that CRISPR-based technology can successfully remove viral DNA from the cells of infected non-human primates.

Other researchers who contributed to the study include Hong Liu, Chen Chen, Shuren Liao, and Shohreh Amini, Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University; Danielle K. Sohaii, Conrad R.Y. Cruz, and Catherine M. Bollard, Center for Cancer and Immunology Research, Children’s National Health System, The George Washington University; Thomas J. Cradick and Jennifer Gordon, Excision Biotherapeutics, San Francisco, CA; Anand Mehta, Stephane Grauzam, and James Dressman, Department of Cell and Molecular Pharmacology, Medical University of South Carolina; and Carlos Barrero and Magda Florez, Department of Pharmaceutical Sciences, School of Pharmacy, Temple University.

The research was supported in part by grants from the National Institutes of Health and the W.W. Smith Charitable Trust.

Source:
Journal reference:

Liu, H., et al. (2023) Strategic Self-Limiting Production of Infectious HIV Particles by CRISPR in Permissive Cells. Molecular Therapy — Nucleic Acids. doi.org/10.1016/j.omtn.2023.04.027.

Study identifies key genetic mechanism of drug resistance in the deadliest malaria parasites

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

An important genetic mechanism of drug resistance in one of the deadliest human malaria parasites has been identified in a new study published in Nature Microbiology.

A second key gene, pfaat1, responsible for encoding a protein that transports amino acids in the membrane of Plasmodium falciparum, is involved in its resistance to the major anti-malaria drug, chloroquine.

The findings may have implications for the ongoing battle against malaria, which infects an estimated 247 million people worldwide and kills more than 619,000 each year, most of which are young children.

Chloroquine is a major antimalaria drug, however in recent years, resistance has emerged in malaria parasites, first spreading through Southeast Asia and then through Africa in the 1970s and 1980s. Although alternative antimalarial drugs have been developed, resistance to chloroquine remains a big challenge.

Since its discovery in 2000, only one gene has been believed to have been responsible for resistance to chloroquine – the resistance transporter pfcrt which helps the malaria parasite transport the drug out of a key region in their cells, subsequently rendering it ineffective.

In this study, researchers from the Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene & Tropical Medicine (LSHTM) analysed more than 600 genomes of P. falciparum that were collected in The Gambia over a period of 30 years. The team found that mutant variants of  a second gene, pfaat1, which encodes an amino acid transporter, increased in frequency from undetectable to very high levels between 1984 and 2014. Importantly, their genome-wide population analyses also indicated long term co-selection on this gene alongside the previously-known resistance gene pfcrt.

In the laboratory, a further team of researchers including from Texas Biomed, University of Notre Dame and Seattle Children’s Research Institute found that replacing these mutations in parasite genomes using CRISPR gene-editing technology impacted drug resistance. A team from Nottingham University also found that these mutations could impact the function of pfaat1 in yeast, resulting in drug resistance.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

Complementary analysis of malaria genome datasets additionally suggested that parasites from Africa and Asia may carry different mutations in pfaat1 which could help explain differences in the evolution of drug resistance across these continents.

Alfred Amambua-Ngwa, Professor of Genetic Epidemiology at MRC Unit The Gambia at LSHTM said: “This is a very clear example of natural selection in action – these mutations were preferred and passed on with extremely high frequency in a very short amount of time, suggesting they provide a significant survival advantage.

“The mutations in pfaat1 very closely mirror the increase of pfcrt mutations. This, and other genetic analyses in the paper demonstrate that the transporter AAT1 has a major role in chloroquine resistance.”

Grappling with drug resistance, for malaria and other pathogens, requires taking a holistic approach to both drug development and pathogen surveillance. We must be aware that different genes and molecules will be working together to survive treatments. That is why looking at whole genomes and whole populations is so critical.”

David Conway, Professor of Biology, LSHTM

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Source:
Journal reference:

Amambua-Ngwa, A., et al. (2023). Chloroquine resistance evolution in Plasmodium falciparum is mediated by the putative amino acid transporter AAT1. Nature Microbiology. doi.org/10.1038/s41564-023-01377-z.

Fighting tuberculosis with the new MTB Strip Test Kit

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

Lecturers of the Faculty of Allied Health Sciences, Chulalongkorn University have developed MTB Strip Test Kit for Tuberculosis (TB) diagnosis that’s accurate and easy to use, guaranteed by the 2023 Invention Award from the National Research Council of Thailand (NRCT) -; Another hope to reduce the spread of tuberculosis in Thailand.

Tuberculosis is one of the most contagious diseases that continues to challenge the public health system today. Although the World Health Organization (WHO) aims for 2035 (the next 12 years) to be the year to end the global tuberculosis crisis, the disease trend is still worrisome.

Thailand is one of the 14 countries with the most severe TB incidence. Fortunately, drug-resistant tuberculosis in Thailand has been removed from the WHO’s list of highest-incidence countries. Only ordinary tuberculosis cases remain.”

Dr. Panan Ratthawongjirakul, Associate Professor, Department of Transfusion Medicine, Faculty of Allied Health Sciences, Chulalongkorn University

Tuberculosis is an airborne disease caused by a bacterium called “Mycobacterium tuberculosis“. It is spread from TB patients to others through small respiratory secretions (AKA droplets) that come from coughing, sneezing, or talking. It is easy to contract and it spreads quickly.

“One of the mechanisms to help end tuberculosis is identifying TB patients as early as possible to control and limit its transmission” said Assoc. Prof. Dr. Panan about the inception of the research project to develop MTB Strip (Mycobacterium tuberculosis Strip) that is easy to use, convenient to read by the naked eye, and with fast and accurate results. More importantly, the cost should not be high to make it accessible to local public health service systems.

“If we can distribute this test to small hospitals everywhere, we will be able to identify TB patients within two hours and screen positive patients quickly into the treatment system. We believe this will help reduce the number of TB cases in our country” said Assoc. Prof. Dr. Panan about the objective of MTB Strip innovation.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

Pros and Cons of the current methods of TB Testing

Assoc. Prof. Dr. Panan mentioned the various advantages and disadvantages of current testing methods for tuberculosis as follows:

  1. Microscopic examination using acid-fast staining is a simple method. It can be done in a small hospital, but the disadvantage is low sensitivity (the minimum bacterial concentration required for a positive signal when examining with a microscopic examination is 5000–10000 cells in 1 ml of sputum.
  2. Sputum culture is the standard method of diagnosing tuberculosis, but it can only be done in well-equipped large hospitals. This method must be done in a room with a high-safety system to prevent it from spreading outside. It takes more than a month to know the results which will result in delayed treatment.
  3. TB Genotyping involves taking the patient’s sputum to extract and amplify the genetic materials which are then tested by a Real-time PCR machine. The disadvantage of this method is that it is costly and requires a lab with specialized personnel, so it can be done only in some hospitals.

Based on the advantages and limitations of various methods used to detect tuberculosis, the research team developed the MTB Strip Test Kit.

Faster and easier TB Screening with MTB Strip

MTB Strip TB Test Kit consists of 2 main parts: 1. Genetic amplification using isothermal amplification with specifically modified and designed primers. 2. Genetic materials detection using developed test strips, which are manufactured from ISO13485-certified industrial plants for medical device manufacturing.

Assoc. Prof. Dr. Panan explained the process of using this test kit “after receiving sputum from the patient, the DNA will be extracted and used as a template. We will put a primer specially designed to amplify the amount of genetic material in the DNA of the pathogen in the patient’s sputum before entering the isothermal amplification process by using a recombinase polymerase amplification technique. It takes only 20 – 40 minutes at 37 degrees Celsius. Then, the developed test strip is dipped into the amplified genetic material. The results will appear on the test strip as positive and negative results like the ATK test that we are familiar with.”

The key feature of the MTB Strip is its sensitivity to tuberculosis. With a small amount of tuberculosis in the sputum, the test can detect it and display the result. In addition, the test process takes less than an hour and does not require any special tools.

“The results are up to 96 percent accurate compared to Realtime PCR and other commonly used acid-resistant dye methods. Importantly, this kit is cheaper than molecular biology tests because it does not require any special tools such as thermocycler” Assoc. Prof. Dr. Panan emphasized.

The MTB Strip kit uses the principle of amplifying genetic material under a single constant temperature in conjunction with a heat box. In a typical laboratory, this type of box is already available. Small hospitals can also use this technique.

if (g_displayableSlots.mobileBottomMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-mrec’); });
}

“The MTB Strip TB test kit we have developed will enable many existing small and medium-sized hospitals in Thailand to screen for TB cases so that patients can receive appropriate treatment quickly, thereby reducing the number of TB cases and the spread of TB.”

Fighting tuberculosis with the Distribution of MTB strips to the provinces

The MTB Strip Test prototypes have already been administered at Umphang Hospital, Tak Province in 2019-2020 and the results are good to a certain extent. However, Assoc. Prof. Dr. Panan has not stopped developing methods and innovations to reduce the number of cases of tuberculosis in Thailand.

“Although the MTB Strip kit works satisfactorily, we would still like to develop more sensitivity by making the DNA extraction easier to be used as the kit primer.”

In addition, Assoc. Prof. Dr. Panan also has plans to expand the testing of TB and related diseases by developing an easier-to-use DNA extraction kit and TB test kit that can identify drug-resistant variants of TB right from the outset, so that more specific treatment guidelines can be set.

“We are currently conducting in-depth research on the genetic modification of tuberculosis using a novel technique of genetic modification for a living organism called CRISPR Cas-9 Interference to modify certain TB genes, making the infection less aggressive and more responsive to antituberculosis drugs. CRISPR Cas-9 Interference can be used in conjunction with current antituberculosis drugs.”

If the study is successful, it will be a new TB treatment of the future, which Assoc. Prof. Dr. Panan is sure will help reduce the number of TB cases to reach WHO’s target. Small hospitals interested in the MTB Strip Test kits can contact Assoc. Prof. Dr. Panan Rathwongjirakul, the Research Unit of Innovative Diagnosis of Antimicrobial Resistance, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University.

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

“Glow-in-the-Dark” Proteins: The Future of Viral Disease Detection?

Although there have been significant advancements in diagnostic tests for viral diseases, many highly sensitive tests still rely on complex sample preparation and result interpretation methods, rendering them unsuitable for point-of-care settings or resource-limited areas. However, researchers have now revealed in ACS Central Science a novel, sensitive technique that can analyze viral nucleic acids in just 20 minutes using a one-step process with “glow-in-the-dark” proteins.

Bioluminescence, the scientific phenomenon behind the firefly’s glow, the anglerfish’s radiant lure, and the ghostly blue of phytoplankton-laden shores, is powered by a chemical reaction involving the luciferase protein. This luminescent protein has been integrated into sensors that emit visible light when detecting their target, making them ideal for straightforward point-of-care testing. However, until now, these sensors have not achieved the exceptional sensitivity necessary for clinical diagnostic tests.

The gene-editing technique known as CRISPR could provide this ability, but it requires many steps and additional specialized equipment to detect what can be a low signal in a complex, noisy sample. So, Maarten Merkx and colleagues wanted to use CRISPR-related proteins, but combine them with a bioluminescence technique whose signal could be detected with just a digital camera.

To make sure there was enough sample RNA or DNA to analyze, the researchers performed recombinase polymerase amplification (RPA), a simple method that works at a constant temperature of about 100 F. With the new technique, called LUNAS (luminescent nucleic acid sensor), two CRISPR/Cas9 proteins specific for different neighboring parts of a viral genome each have a distinct fragment of luciferase attached to them.

If a specific viral genome that the researchers were testing for was present, the two CRISPR/Cas9 proteins would bind to the targeted nucleic acid sequences and come close to each other, allowing the complete luciferase protein to form and shine blue light in the presence of a chemical substrate. To account for this substrate being used up, the researchers used a control reaction that shined green. A tube that changed from green to blue indicated a positive result.

When tested on clinical samples collected from nasal swabs, RPA-LUNAS successfully detected SARS-CoV-2 RNA within 20 minutes, even at concentrations as low as 200 copies per microliter. The researchers say that the LUNAS assay has great potential for detecting many other viruses effectively and easily.

Reference: “Glow-in-the-Dark Infectious Disease Diagnostics Using CRISPR-Cas9-Based Split Luciferase Complementation” by Harmen J. van der Veer, Eva A. van Aalen, Claire M. S. Michielsen, Eva T. L. Hanckmann, Jeroen Deckers, Marcel M. G. J. van Borren, Jacky Flipse, Anne J. M. Loonen, Joost P. H. Schoeber and Maarten Merkx, 15 March 2023, ACS Central Science.
DOI: 10.1021/acscentsci.2c01467

The study was funded by the Dutch Research Council | Nationaal Regieorgaan Praktijkgericht Onderzoek SIA (NRPO-SIA) and the Eindhoven University Fund.

Avanced genome editing technology could be used as a one-time treatment for CD3 delta SCID

A new UCLA-led study suggests that advanced genome editing technology could be used as a one-time treatment for the rare and deadly genetic disease CD3 delta severe combined immunodeficiency.

The condition, also known as CD3 delta SCID, is caused by a mutation in the CD3D gene, which prevents the production of the CD3 delta protein that is needed for the normal development of T cells from blood stem cells.

Without T cells, babies born with CD3 delta SCID are unable to fight off infections and, if untreated, often die within the first two years of life. Currently, bone marrow transplant is the only available treatment, but the procedure carries significant risks.

In a study published in Cell, the researchers showed that a new genome editing technique called base editing can correct the mutation that causes CD3 delta SCID in blood stem cells and restore their ability to produce T cells.

The potential therapy is the result of a collaboration between the laboratories of Dr. Donald Kohn and Dr. Gay Crooks, both members of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA and senior authors of the study.

Kohn’s lab has previously developed successful gene therapies for several immune system deficiencies, including other forms of SCID. He and his colleagues turned their attention to CD3 delta SCID at the request of Dr. Nicola Wright, a pediatric hematologist and immunologist at the Alberta Children’s Hospital Research Institute in Canada, who reached out in search of a better treatment option for her patients.

CD3 delta SCID is prevalent in the Mennonite community that migrates between Canada and Mexico.

Because newborns are not screened for SCID in Mexico, I often see babies who have been diagnosed late and are returning to Canada quite sick.”

Dr. Nicola Wright, pediatric hematologist and immunologist at the Alberta Children’s Hospital Research Institute

When Kohn presented Wright’s request to his lab, Grace McAuley, then a research associate who joined the lab at the end of her senior year at UCLA, stepped up with a daring idea.

“Grace proposed we try base editing, a very new technology my lab had never attempted before,” said Kohn, a distinguished professor of microbiology, immunology and molecular genetics, and of pediatrics.

Base editing is an ultraprecise form of genome editing that enables scientists to correct single-letter mutations in DNA. DNA is made up of four chemical bases that are referred to as A, T, C and G; those bases pair together to form the “rungs” in DNA’s double-helix ladder structure.

While other gene editing platforms, like CRISPR-Cas9, cut both strands of the chromosome to make changes to DNA, base editing chemically changes one DNA base letter into another -; an A to a G, for example -; leaving the chromosome intact.

“I had a very steep learning curve in the beginning, when base editing just wasn’t working,” said McAuley, who is now pursuing an M.D.-Ph.D. at UC San Diego and is the study’s co-first author. “But I kept pushing forward. My goal was help get this therapy to the clinic as fast as was safely possible.”

McAuley reached out to the Broad Institute’s David Liu, the inventor of base editing, for advice on how to evaluate the technique’s safety for this particular use. Eventually, McAuley identified a base editor that was highly efficient at correcting the disease-causing genetic mutation.

Because the disease is extremely rare, obtaining patient stem cells for the UCLA study was a significant challenge. The project got a boost when Wright provided the researchers with blood stem cells donated by a CD3 delta SCID patient who was undergoing a bone marrow transplant.

The base editor corrected an average of almost 71% of the patient’s stem cells across three laboratory experiments.

Next, McAuley worked with Dr. Gloria Yiu, a UCLA clinical instructor in rheumatology, to test whether the corrected cells could give rise to T cells. Yiu used artificial thymic organoids, which are stem cell-derived tissue models developed by Crooks’ lab that mimic the environment of the human thymus -; the organ where blood stem cells become T cells.

When the corrected blood stem cells were introduced into the artificial thymic organoids, they produced fully functional and mature T cells.

“Because the artificial thymic organoid supports the development of mature T cells so efficiently, it was the ideal system to show that base editing of patients’ stem cells could fix the defect seen in this disease,” said Yiu, who is also a co-first author of the study.

As a final step, McAuley studied the longevity of the corrected stem cells by transplanting them into a mouse. The corrected cells remained four months after transplant, indicating that base editing had corrected the mutation in true, self-renewing blood stem cells. The findings suggest that corrected blood stem cells could persist long-term and produce the T cells patients would need to live healthy lives.

“This project was a beautiful picture of team science, with clinical need and scientific expertise aligned,” said Crooks, a professor of pathology and laboratory medicine. “Every team member played a vital role in making this work successful.”

The research team is now working with Wright on how to bring the new approach to a clinical trial for infants with CD3 delta SCID from Canada, Mexico and the U.S.

This research was funded by the Jeffrey Modell Foundation, the National Institutes of Health, the Bill and Melinda Gates Foundation, the Howard Hughes Medical Institute, the V Foundation and the A.P. Giannini Foundation.

The therapeutic approach described in this article has been used in preclinical tests only and has not been tested in humans or approved by the Food and Drug Administration as safe and effective for use in humans. The technique is covered by a patent application filed by the UCLA Technology Development Group on behalf of the Regents of the University of California, with Kohn and McAuley listed as co-inventors.

Source:
Journal reference:

McAuley, G.E., et al. (2023) Human T cell generation is restored in CD3δ severe combined immunodeficiency through adenine base editing. Cell. doi.org/10.1016/j.cell.2023.02.027.

Targeting T cell iron metabolism may offer a new approach for treating lupus

Targeting iron metabolism in immune system cells may offer a new approach for treating systemic lupus erythematosus (SLE) -; the most common form of the chronic autoimmune disease lupus.

A multidisciplinary team of investigators at Vanderbilt University Medical Center has discovered that blocking an iron uptake receptor reduces disease pathology and promotes the activity of anti-inflammatory regulatory T cells in a mouse model of SLE. The findings were published Jan. 13 in the journal Science Immunology.

Lupus, including SLE, occurs when the immune system attacks a person’s own healthy tissues, causing pain, inflammation and tissue damage. Lupus most commonly affects skin, joints, brain, lungs, kidneys and blood vessels. About 1.5 million Americans and 5 million people worldwide have a form of lupus, according to the Lupus Foundation of America.

Treatments for lupus aim to control symptoms, reduce immune system attack of tissues, and protect organs from damage. Only one targeted biologic agent has been approved for treating SLE, belimumab in 2011.

It has been a real challenge to come up with new therapies for lupus. The patient population and the disease are heterogeneous, which makes it difficult to design and conduct clinical trials.”

Jeffrey Rathmell, PhD, Professor of Pathology, Microbiology and Immunology and Cornelius Vanderbilt Chair in Immunobiology

Rathmell’s group has had a long-standing interest in lupus as part of a broader effort to understand mechanisms of autoimmunity.

When postdoctoral fellow Kelsey Voss, PhD, began studying T cell metabolism in lupus, she noticed that iron appeared to be a “common denominator in many of the problems in T cells,” she said. She was also intrigued by the finding that T cells from patients with lupus have high iron levels, even though patients are often anemic.

“It was not clear why the T cells were high in iron, or what that meant,” said Voss, first author of the Science Immunology paper.

To explore T cell iron metabolism in lupus, Voss and Rathmell drew on the expertise of other investigators at VUMC:

  • Eric Skaar, PhD, and his team are experienced in the study of iron and other metals;

  • Amy Major, PhD, and her group provided a mouse model of SLE; and

  • Michelle Ormseth, MD, MSCI, and her team recruited patients with SLE to provide blood samples.

First, Voss used a CRISPR genome editing screen to evaluate iron-handling genes in T cells. She identified the transferrin receptor, which imports iron into cells, as critical for inflammatory T cells and inhibitory for anti-inflammatory regulatory T cells.

The researchers found that the transferrin receptor was more highly expressed on T cells from SLE-prone mice and T cells from patients with SLE, which caused the cells to accumulate too much iron.

“We see a lot of complications coming from that -; the mitochondria don’t function properly, and other signaling pathways are altered,” Voss said.

An antibody that blocks the transferrin receptor reduced intracellular iron levels, inhibited inflammatory T cell activity, and enhanced regulatory T cell activity. Treatment of SLE-prone mice with the antibody reduced kidney and liver pathology and increased production of the anti-inflammatory factor, IL-10.

“It was really surprising and exciting to find different effects of the transferrin receptor in different types of T cells,” Voss said. “If you’re trying to target an autoimmune disease by affecting T cell function, you want to inhibit inflammatory T cells but not harm regulatory T cells. That’s exactly what targeting the transferrin receptor did.”

In T cells from patients with lupus, expression of the transferrin receptor correlated with disease severity, and blocking the receptor in vitro enhanced production of IL-10.

The researchers are interested in developing transferrin receptor antibodies that bind specifically to T cells, to avoid any potential off-target effects (the transferrin receptor mediates iron uptake in many cell types). They are also interested in studying the details of their unexpected discovery that blocking the transferrin receptor enhances regulatory T cell activity.

Skaar is the Ernest W. Goodpasture Professor of Pathology and director of the Vanderbilt Institute for Infection, Immunology, and Inflammation. Major, associate professor of Medicine, and Ormseth, assistant professor of Medicine, are faculty members in the Division of Rheumatology and Immunology. Rathmell is the director of the Vanderbilt Center for Immunobiology.

Other authors of the study include Allison Sewell, Evan Krystofiak, PhD, Katherine Gibson-Corley, DVM, PhD, Arissa Young, MD, Jacob Basham, MD, Ayaka Sugiura, PhD, Emily Arner, PhD, William Beavers, PhD, Dillon Kunkle, PhD, Megan Dickson, Gabriel Needle, and W. Kimryn Rathmell, MD, PhD.

The research was supported by the National Institutes of Health (grants DK105550, AI153167, DK101003, AI150701, CA253718) and the Lupus Research Alliance William Paul Distinguished Innovator Award to Jeffrey Rathmell.

Source:
Journal reference:

Voss, K., et al. (2023) Elevated transferrin receptor impairs T cell metabolism and function in systemic lupus erythematosus. Science Immunology. doi.org/10.1126/sciimmunol.abq0178.

Newly discovered CRISPR immune system shuts down infected cells to thwart infection

Thought LeadersRyan JacksonAssistant Professor Utah State University 

In this interview, News Medical speaks to Assistant Professor Ryan Jackson about his latest work, published in tandem Nature papers, detailing the discovery of a new CRISPR immune system. 

Please can you introduce yourself and tell us about your professional background?

I am an Assistant Professor at Utah State University (USU). I use biochemical and structural techniques to understand how the molecules that perform the reactions of life function. I’ve been working in the CRISPR field since 2011. I started as a postdoc in Blake Wiedenheft’s lab at Montana State University, and in 2016 I started my own research lab at USU. I earned both of my degrees (a B.S. in Biology and a Ph.D. in Biochemistry) from USU, so joining the faculty was like coming home. My research lab specializes in determining the structure and function of newly discovered and obscure CRISPR systems.

Due to its gene editing potential, CRISPR has caught the imagination of the general public and the scientific community. Could you briefly tell us what CRISPR is and its potential medical significance?

CRISPR was discovered by scientists studying bacterial immune systems. In nature, CRISPR systems protect bacteria from viruses. But once scientists discovered that the system could be reprogrammed to cut and edit DNA sequences in a variety of cells, including plants and humans, it has been primarily understood to be a tool for gene editing.

Image Credit: ART-ur/Shutterstock.com

Image Credit: ART-ur/Shutterstock.com

The potential medical significance of CRISPR-based tools is vast, including tools for research to identify the roles of genes in disease and tools for the fast diagnosis of disease. Probably the most amazing potential is the ability to edit the DNA of cells that make humans sick – potentially curing genetic diseases. A recent example of this is Victoria Gray and the use of CRISPR to cure her sickle cell anemia.

You have recently published two papers in the journal Nature. Please could you describe how you conducted each study and the main findings from each paper? How does this new system, Cas12a2, differ from better-known CRISPR systems, such as CRISPR-Cas9?

We used microbiology, biochemistry, and structural methods to determine how a distinct CRISPR system functions. We discovered that, unlike the better-known systems like Cas9, which protect cells from viral-induced death, activation of our system shuts down cells that are infected. This “abortive” mechanism kills or slows down the growth of the cell before the virus can replicate and infect other bacteria.

We also determined that, unlike CRISPR systems that target DNA (e.g., Cas9), our system (Cas12a2) targets RNA. Instead of making a single specific cut in the targeted DNA, like Cas9, when Cas12a2 binds RNA, it drastically changes its shape in a way that allows it to bind and cut any sequence of DNA or RNA. This cutting activity destroys the virus genome but also degrades the genome of the host cell, shutting down the cell before the virus can replicate.

How is Cas12a2 able to thwart infection, and what are the potential applications of such an ability?

Cas12a2 recognizes virus RNA and then kills or shuts down the infected cell before more viruses can be made. Although much more needs to be done, we can envision repurposing Cas12a2 to recognize infected human cells and then causing them to die before they can make new viruses. Effectively stopping an infection in its tracks. We envision that such therapies could extend to any cells with a specific genetic marker that could be recognized by Cas12a2, for example, cancer.

USU Biochemists Describe Structure and Function of Newly Discovered CRISPR Immune System

What are the potential therapeutic and diagnostic applications of Cas12a2?

The therapeutic applications would be any application where the death of a cell with a specific RNA signature would treat a disease state. Such applications could treat communicable diseases as well as more complicated diseases such as cancer.

The diagnostics applications are more obvious and are more likely to be realized in the near future. Cas12a2 can be programmed to identify RNA from any disease. The RNA-induced activation of DNA cutting can be leveraged to amplify RNA detection. Thus, this tool could be used to diagnose any disease quickly.

How significant are your findings to the current understanding of CRISPR systems and their potential applications?

Our results are significant because no other CRISPR-associated (Cas) protein binds RNA and then becomes a single- and double-stranded DNA and RNA cutter that cuts any sequence.

Image Credit: Panuwach/Shutterstock.com

Image Credit: Panuwach/Shutterstock.com

Other proteins have parts of this activity but not both. For example, Cas13 enzymes bind RNA and then become RNA cutters, and Cas12a enzymes bind double-stranded DNA and become single-stranded DNA cutters. Also, some CRISPR systems link RNA-binding to DNA degradation (e.g., type III CRISPR systems activating NucC DNAses), but this activity relies on multiple proteins and second messenger intermediates.   

As far as we know, Cas12a2 is the only single-protein Cas enzyme that binds RNA and then becomes a single-stranded DNA, double-stranded DNA, and single-stranded RNA cutter.

What is next for you and your research?

We are working to see how Cas12a2 can be repurposed, and we continue to research the structure and function of other newly discovered and obscure CRISPR systems. We anticipate that our work will lead to many more interesting discoveries with potential applications in science and medicine.

Where can readers find more information?

About Assistant Professor Ryan Jackson

I am an Assistant Professor of Biochemistry at Utah State University. I have been using structural biology and biochemistry to determine the function of the molecules of life since 2007. I am most interested in understanding how protein and RNA molecules interact in life science reactions.

$(function() { Azom.wireUpVideoThumbnailLazyLoading(); });

Scientists Successfully Edit the Genes of Nature’s Master Manipulators

CRISPR, the revolutionary gene-editing tool, is making waves in the scientific community once more with its potential to edit the genomes of viruses that infect bacteria.

Led by CRISPR pioneers Jennifer Doudna and Jill Banfield, a team has used a rare form of CRISPR to engineer custom bacteriophages, a development that could aid in the treatment of drug-resistant infections and allow researchers to control microbiomes without the use of antibiotics. The research, published in Nature Microbiology, represents a significant achievement as the engineering of bacteriophages has long been a challenge for the scientific community.

“Bacteriophages are some of the most abundant and diverse biological entities on Earth. Unlike prior approaches, this editing strategy works against the tremendous genetic diversity of bacteriophages,” said first author Benjamin Adler, a postdoctoral fellow in Doudna’s lab. “There are so many exciting directions here – discovery is literally at our fingertips!”

Bacteriophages, also simply called phages, insert their genetic material into bacterial cells using a syringe-like apparatus, then hijack the protein-building machinery of their hosts in order to reproduce themselves – usually killing the bacteria in the process. (They’re harmless to other organisms, including us humans, even though electron microscopy images have revealed that they look like sinister alien spaceships.)

CRISPR-Cas is a type of immune defense mechanism that many bacteria and archaea use against phages. A CRISPR-Cas system consists of short snippets of RNA that are complementary to sequences in phage genes, allowing the microbe to recognize when invasive genetic material has been inserted, and scissor-like enzymes that neutralize the phage genes by cutting them into harmless pieces, after being guided into place by the RNA.

Over millennia, the perpetual evolutionary battle between phage offense and bacterial defense forced phages to specialize. There are a lot of microbes, so there are also a lot of phages, each with unique adaptations. This astounding diversity has made phage editing difficult, including making them resistant to many forms of CRISPR, which is why the most commonly used system – CRISPR-Cas9 – doesn’t work for this application.

“Phages have many ways to evade defenses, ranging from anti-CRISPRs to just being good at repairing their own DNA,” said Adler. “So, in a sense, the adaptations encoded in phage genomes that make them so good at manipulating microbes are the exact same reason why it has been so difficult to develop a general-purpose tool for editing their genomes.”

Project leaders Doudna and Banfield have developed numerous CRISPR-based tools together since they first collaborated on an early investigation of CRISPR in 2008. That work – performed at Lawrence Berkeley National Laboratory (Berkeley Lab) – was cited by the Nobel Prize committee when Doudna and her other collaborator, Emmanuelle Charpentier, received the prize in 2020. Doudna and Banfield’s team of Berkeley Lab and UC Berkeley researchers were studying the properties of a rare form of CRISPR called CRISPR-Cas13 (derived from a bacterium commonly found in the human mouth) when they discovered that this version of the defense system works against a huge range of phages.

The phage-fighting potency of CRISPR-Cas13 was unexpected given how few microbes use it, explained Adler. The scientists were doubly surprised because the phages it defeated in testing all infect using double-stranded DNA, but the CRISPR-Cas13 system only targets and chops single-stranded viral RNA. Like other types of viruses, some phages have DNA-based genomes and some have RNA-based genomes. However, all known viruses use RNA to express their genes. The CRISPR-Cas13 system effectively neutralized nine different DNA phages that all infect strains of E. coli, yet have almost no similarity across their genomes.

According to co-author and phage expert Vivek Mutalik, a staff scientist in Berkeley Lab’s Biosciences Area, these findings indicate that the CRISPR system can defend against diverse DNA-based phages by targeting their RNA after it has been converted from DNA by the bacteria’s own enzymes prior to protein translation.

Next, the team demonstrated that the system can be used to edit phage genomes rather than just chop them up defensively.

First, they made segments of DNA composed of the phage sequence they wanted to create flanked by native phage sequences and put them into the phage’s target bacteria. When the phages infected the DNA-laden microbes, a small percentage of the phages reproducing inside the microbes took up the altered DNA and incorporated it into their genomes in place of the original sequence. This step is a longstanding DNA editing technique called homologous recombination. The decades-old problem in phage research is that although this step, the actual phage genome editing, works just fine, isolating and replicating the phages with the edited sequence from the larger pool of normal phages is very tricky.

This is where the CRISPR-Cas13 comes in. In step two, the scientists engineered another strain of host-microbe to contain a CRISPR-Cas13 system that senses and defends against the normal phage genome sequence. When the phages made in step one were exposed to the second-round hosts, the phages with the original sequence were defeated by the CRISPR defense system, but the small number of edited phages were able to evade it. They survived and replicated themselves.

Experiments with three unrelated E. coli phages showed a staggering success rate: more than 99% of the phages produced in the two-step processes contained the edits, which ranged from enormous multi-gene deletions all the way down to precise replacements of a single amino acid.

“In my opinion, this work on phage engineering is one of the top milestones in phage biology,” said Mutalik. “As phages impact microbial ecology, evolution, population dynamics, and virulence, seamless engineering of bacteria and their phages has profound implications for foundational science but also has the potential to make a real difference in all aspects of the bioeconomy. In addition to human health, this phage engineering capability will impact everything from biomanufacturing and agriculture to food production.”

Buoyed by their initial results, the scientists are currently working to expand the CRISPR system to use it on more types of phages, starting with ones that impact microbial soil communities. They are also using it as a tool to explore the genetic mysteries within phage genomes. Who knows what other amazing tools and technologies can be inspired by the spoils of microscopic war between bacteria and viruses?

Reference: “Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing” by Benjamin A. Adler, Tomas Hessler, Brady F. Cress, Arushi Lahiri, Vivek K. Mutalik, Rodolphe Barrangou, Jillian Banfield and Jennifer A. Doudna, 31 October 2022, Nature Microbiology.
DOI: 10.1038/s41564-022-01258-x

The study was was funded by the Department of Energy Microbial Community Analysis & Functional Evaluation in Soils (m-CAFES) Scientific Focus Area.

Revolutionary Cancer Vaccine Simultaneously Kills and Prevents Brain Tumors

Dual-action cell therapy engineered to eliminate established tumors and train the immune system to eradicate primary tumor and prevent cancer’s recurrence.

Scientists are harnessing a new way to turn cancer cells into potent, anti-cancer agents. In the latest work from the lab of Khalid Shah, MS, PhD, at Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare system, investigators have developed a new cell therapy approach to eliminate established tumors and induce long-term immunity, training the immune system so that it can prevent cancer from recurring. The team tested their dual-action, cancer-killing vaccine in an advanced mouse model of the deadly brain cancer glioblastoma, with promising results. Findings are published in Science Translational Medicine.

“Our team has pursued a simple idea: to take cancer cells and transform them into cancer killers and vaccines,” said corresponding author Khalid Shah, MS, PhD, director of the Center for Stem Cell and Translational Immunotherapy (CSTI)  and the vice chair of research in the Department of Neurosurgery at the Brigham and faculty at Harvard Medical School and Harvard Stem Cell Institute (HSCI). “Using gene engineering, we are repurposing cancer cells to develop a therapeutic that kills tumor cells and stimulates the immune system to both destroy primary tumors and prevent cancer.”

Cancer vaccines are an active area of research for many labs, but the approach that Shah and his colleagues have taken is distinct. Instead of using inactivated tumor cells, the team repurposes living tumor cells, which possess an unusual feature. Like homing pigeons returning to roost, living tumor cells will travel long distances across the brain to return to the site of their fellow tumor cells. Taking advantage of this unique property, Shah’s team engineered living tumor cells using the gene-editing tool CRISPR-Cas9 and repurposed them to release tumor cell killing agent. In addition, the engineered tumor cells were designed to express factors that would make them easy for the immune system to spot, tag, and remember, priming the immune system for a long-term anti-tumor response.

The team tested their repurposed CRISPR-enhanced and reverse-engineered therapeutic tumor cells (ThTC) in different mice strains including the one that bore bone marrow, liver and thymus cells derived from humans, mimicking the human immune microenvironment. Shah’s team also built a two-layered safety switch into the cancer cell, which, when activated, eradicates ThTCs if needed. This dual-action cell therapy was safe, applicable, and efficacious in these models, suggesting a roadmap toward therapy. While further testing and development is needed, Shah’s team specifically chose this model and used human cells to smooth the path of translating their findings for patient settings.

“Throughout all of the work that we do in the Center, even when it is highly technical, we never lose sight of the patient,” said Shah. “Our goal is to take an innovative but translatable approach so that we can develop a therapeutic, cancer-killing vaccine that ultimately will have a lasting impact in medicine.” Shah and colleagues note that this therapeutic strategy is applicable to a wider range of solid tumors and that further investigations of its applications are warranted.

Reference: “Bifunctional cancer cell-based vaccine concomitantly drives direct tumor killing and antitumor immunity” by Kok-Siong Chen, Clemens Reinshagen, Thijs A. Van Schaik, Filippo Rossignoli, Paulo Borges, Natalia Claire Mendonca, Reza Abdi, Brennan Simon, David A. Reardon, Hiroaki Wakimoto and Khalid Shah, 4 January 2023, Science Translational Medicine.
DOI: 10.1126/scitranslmed.abo4778

Disclosures: Shah owns equity in and is a member of the Board of Directors of AMASA Therapeutics, a company developing stem cell-based therapies for cancer.

Funding: This work was supported by the National Institutes of Health (grant R01-NS121096).