Tag Archives: Cystic Fibrosis

Genetic disorder that causes immunodeficiency and susceptibility to opportunistic infections discovered

An international consortium co-led by Vanderbilt University Medical Center immunogeneticist Rubén Martínez-Barricarte, PhD, has discovered a new genetic disorder that causes immunodeficiency and profound susceptibility to opportunistic infections including a life-threatening fungal pneumonia.

The discovery, reported Jan. 20 in the journal Science Immunology, will help identify people who carry this in-born error of immunity (IEI). “Our findings will provide the basis for genetic diagnosis and preventive treatment for these groups of patients,” Martínez-Barricarte said.

IEIs, also known as primary immunodeficiencies, are genetic defects characterized by increased susceptibility to infectious diseases, autoimmunity, anti-inflammatory disorders, allergy, and in some cases, cancer.

To date, 485 different IEIs have been identified. It is now thought that they occur in one of every 1,000 to 5,000 births, making them as prevalent as other genetic disorders, including cystic fibrosis and Duchene’s muscular dystrophy.

Despite recent medical advances, about half of patients with IEIs still lack a genetic diagnosis that could help them avoid debilitating illness and death. That’s why this research is so important.

The error in this case is a mutation in the gene for the protein IRF4, a transcription factor that is pivotal for the development and function of B and T white blood cells, as well as other immune cells.

As a postdoctoral fellow at The Rockefeller University, Martínez-Barricarte was part of an international research team that, in 2018, identified an IRF4 mutation associated with Whipple’s disease, a rare bacterial infection of the intestine that causes diarrhea, weight loss, and abdominal and joint pain.

Martínez-Barricarte is now an assistant professor of Medicine in the Division of Genetic Medicine, and of Pathology, Microbiology & Immunology in the Division of Molecular Pathogenesis.

In 2020, after moving his lab to VUMC, he began collaborating with Aidé Tamara Staines-Boone, MD, and her colleagues in Monterrey, Mexico. They were caring for a young boy who was suffering from severe and recurrent fungal, viral, mycobacterial, and other infections.

Martínez-Barricarte and his team sequenced the protein-encoding regions of the boy’s genome and discovered a de novo IRF4 mutation, which originated in the patient and was not inherited from his parents.

Upon consulting with IRF4 experts at the Imagine Institute for the study and treatment of genetic diseases in Paris, they were told that seven other groups were independently characterizing the same mutation. They now collaborate as the IRF4 International Consortium.

In the current study, the consortium identified seven patients from six unrelated families across four continents with profound combination immunodeficiency who experienced recurrent and serious infections, including pneumonia caused by the fungus Pneumocystis jirovecii. Each patient had the same mutation in the DNA-binding domain of IRF4.

Extensive phenotyping of patients’ blood cells revealed immune cell abnormalities associated with the disease, including impaired maturation of antibody-producing B cells, and reduced T-cell production of infection-fighting cytokines.

Two knock-in mouse models, in which the mutation was inserted into the mouse genome, exhibited a severe defect in antibody production consistent with the combined immune deficiency observed in the patients.

The researchers also discovered the mutation had a “multimorphic” effect detrimental to the activation and differentiation of immune cells.

While the mutant IRF4 binds to DNA with a higher affinity than the native form of the protein (in a hypermorphic way), its transcriptional activity in common, canonical genes is reduced (hypomorphic), and it binds to other DNA sites (in a neomorphic way), altering the protein’s normal gene expression profile.

This multimorphic activity is a new mechanism for human disease. “We anticipate that variants with multimorphic activity may be more widespread in health and disease,” the researchers concluded.

Co-authors from Martínez-Barricarte’s lab included graduate students Jareb Pérez Caraballo and Xin Zhen, and research assistant Linh Tran. His research was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (grant #AI171466).

Source:
Journal reference:

IRF4 International Consortium (2023) A multimorphic mutation in IRF4 causes human autosomal dominant combined immunodeficiency. Science Immunology. doi.org/10.1126/sciimmunol.ade7953.

Nanotechnology, messenger RNA combined in possible new ‘universal’ COVID-19 treatment

A study led by an Oregon State University pharmaceutical sciences researcher has produced a proof of principle for a new “universal” means of treating COVID-19.

Gaurav Sahay and collaborators at OSU and the Texas Biomedical Research Institute demonstrated in a mouse model that it’s possible to prompt the production of a protein that can block multiple variants of the SARS-CoV-2 virus from entering cells and causing respiratory disease.

“Rather than messenger RNA as a vaccine, this shows that mRNA can be used as a universal therapy against different coronaviruses,” Sahay said. “Despite mass vaccination, there is an urgent need to develop effective treatment options to end this pandemic. Several therapies have shown some effectiveness, but the virus’ high mutation rate complicates the development of drugs that treat all variants of concern.”

Findings were published in Advanced Science. Next steps involve showing that the protein prevents infection in mice, said Sahay, who added that the mRNA treatment is possibly “a couple of years” away from being available to human patients.

Breathing in the virus is the primary way to contract COVID-19, blamed for 6 million deaths globally since the pandemic began in late 2019. The virus’ envelope is covered in spike proteins that bind to an enzyme produced by cells in the lungs.

Using messenger RNA packaged in lipid nanoparticles, the scientists showed in the mouse model that host cells can produce a “decoy” enzyme that binds to coronavirus spike proteins, meaning the virus shouldn’t be able to latch onto cells in the host’s airway and start the infection process.

The study, which involved messenger RNA that was administered intravenously and also through inhalation, which would be the preferred delivery method for humans, was published in Advanced Science.

“Proteins are large, complex molecules that serve as the workhorses of cells, enabling all of the biological functions within a cell,” said Sahay, an associate professor in the OSU College of Pharmacy. “DNA holds the blueprints from which proteins get made after the code is first transcribed into messenger RNA.”

An enzyme is a type of protein that acts as a catalyst for biochemical reactions. HACE2 — short for human angiotensin-converting enzyme 2 — is an enzyme of the airway cells. It is also expressed in the heart, kidney and intestine, and has a hand in numerous physiological functions.

Simply giving a COVID-19 patient hACE2 would have limited effectiveness in treating the disease, Sahay said, because the soluble form of the enzyme, the kind that can circulate throughout the body, has a short half-life — less than two hours, meaning it wouldn’t stay in a person’s system very long.

But lipid nanoparticles, often abbreviated to LNP, containing mRNA that orders production of the enzyme can help overcome that problem.

In this study, the researchers engineered synthetic mRNA to encode a soluble form of the enzyme, packaged the mRNA into lipid nanoparticles and delivered it to cells in the liver with an IV; within two hours, the enzyme was in the mice’s bloodstream, and it stayed there for days.

The scientists also delivered the loaded LNP via inhalation, prompting epithelial cells in the lungs to secrete soluble hACE2.

“The soluble enzyme effectively inhibited live SARS-CoV-2 from infecting host cells,” said OSU postdoctoral researcher Jeonghwan Kim. “The synthesis of mRNA is fast, affordable and scalable, and LNP-delivered mRNA can be repeated as necessary to sustain protein production until the infection subsides. Once treatment stops, the no-longer-needed soluble hACE2 clears the system in a matter of days.”

In addition to Sahay, other Oregon State scientists contributing to the research were Jeonghwan Kim, Antony Jozic, Anindit Mukherjee and Dylan Nelson. The studies with the live virus were performed in collaboration with Texas Biomedical Research Institute scientists Kevin Chiem, Md Siddiqur Rahman Khan Jordi B. Torrelles, and Luis Martinez-Sobrido

Funding from the OSU College of Pharmacy supported this study. The Sahay lab is supported through funding from the National Institutes of Health and the Cystic Fibrosis Foundation.

Story Source:

Materials provided by Oregon State University. Original written by Steve Lundeberg. Note: Content may be edited for style and length.

Journal Reference:

  • Jeonghwan Kim, Antony Jozic, Anindit Mukherjee, Dylan Nelson, Kevin Chiem, Md Siddiqur Rahman Khan, Jordi B. Torrelles, Luis Martinez‐Sobrido, Gaurav Sahay. Rapid Generation of Circulating and Mucosal Decoy Human ACE2 using mRNA Nanotherapeutics for the Potential Treatment of SARS‐CoV‐2. Advanced Science, 2022; 2202556 DOI: 10.1002/advs.202202556
  • Oregon State University

    Clinical trial to test the safety, efficacy of bacteriophages for treating P. aeruginosa infections in CF patients

    Cystic fibrosis (CF) is an inherited disorder that causes severe damage to the lungs and other organs in the body. Nearly 40,000 children and adults in the United States live with CF, an often difficult existence exacerbated by an opportunistic bacterium called Pseudomonas aeruginosa, which is a major cause of chronic, life-threatening lung infections.

    P. aeruginosa infections are not easily treated. The pathogen can be resistant to most current antibiotics. However, an early-stage clinical trial led by scientists at University of California San Diego School of Medicine, with collaborators across the country, has launched to assess the safety and efficacy of treating P. aeruginosa lung infections in CF patients with a different biological weapon: bacteriophages.

    Bacteriophages are viruses that have evolved to target and destroy specific bacterial species or strains. Phages are more abundant than all other life forms on Earth combined and are found wherever bacteria exist. Discovered in the early 20th century, they have long been investigated for their therapeutic potential, but increasingly so with the rise and spread of antibiotic-resistant bacteria.

    In 2016, scientists and physicians at UC San Diego School of Medicine and UC San Diego Health used an experimental intravenous phage therapy to successfully treat and cure colleague Tom Patterson, PhD, who was near death from a multidrug-resistant bacterial infection. Patterson’s was the first documented case in the U.S. to employ intravenous phages to eradicate a systemic bacterial infection. Subsequent successful cases helped lead to creation of the Center for Innovative Phage Applications and Therapeutics (IPATH) at UC San Diego, the first such center in North America.

    In 2020, IPATH researchers published data from 10 cases of intravenous bacteriophage therapy to treat multidrug-resistant bacterial infections, all at UC San Diego. In 7 of 10 cases, there was a successful outcome.

    The new phase 1b/2 clinical trial advances this work. The trial is co-led by Robert Schooley, MD, professor of medicine and an infectious disease expert at UC San Diego School of Medicine who is co-director of IPATH and helped lead the clinical team that treated and cured Patterson in 2016.

    It will consist of three elements, all intended to assess the safety and microbiological activity of a single dose of intravenous phage therapy in males and non-pregnant females 18 years and older, all residing in the United States.

    The dose is a cocktail of four phages that target P. aeruginosa, a bacterial species commonly found in the environment (soil and water) that can cause infections in the blood, lungs and other parts of the body after surgery.

    For persons with CF, P. aeruginosa is a familiar and sometimes fatal foe. The Cystic Fibrosis Foundation estimates that roughly half of all people with CF are infected by Pseudomonas. Previous studies have indicated that chronic P. aeruginosa lung infections negatively impact life expectancy of CF patients, who currently live, on average, to approximately 44 years.

    In the first stage of the trial, two “sentinel subjects” will receive one of three dosing strengths of the IV bacteriophage therapy. If, after 96 hours and no adverse effects, the second stage (2a) will enroll 32 participants into one of four arms: the three doses and a placebo.

    After multiple follow-up visits over 30 days and an analysis of which dosing strength exhibited the most favorable safety and microbiologic activity, i.e. most effective at reducing P. aeruginosa, stage 2b will recruit up to 72 participants to either receive that IV dose or a placebo.

    Enrollment will occur at 16 cystic fibrosis clinical research sites in the United States, including UC San Diego. It is randomized, double-blind and placebo-controlled. The trial is being conducted through the Antibacterial Resistance Leadership Group and funded by the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, with additional support for the UC San Diego trial site from the Mallory Smith Legacy Fund.

    Mallory Smith was born with cystic fibrosis and died in 2017 at the age of 25 from a multidrug-resistant bacterial infection following a double lung transplant.

    Mallory’s death was a preventable tragedy. We are supporting the IPATH trial through Mallory’s Legacy Fund because Mark and I deeply believe in the promise of phage therapy to save lives by combatting multidrug-resistant bacteria.”

    Diane Shader Smith, Mother

    In an article published in 2020 in Nature Microbiology, Schooley and Steffanie Strathdee, PhD, associate dean of global health sciences and Harold Simon Professor in the Department of Medicine and IPATH co-director, describe phages as “living antibiotics.”

    As such, said Schooley, researchers need to learn how to best use them to benefit patients through the same systematic clinical trials employed to evaluate traditional antibiotics.

    The primary objectives of the new trial are first to determine the safety of a single IV phage dose in clinically stable patients with CF who are also infected with P. aeruginosa, said Schooley.

    “Second, it’s to describe the microbiological activity of a single IV dose and third, to assess the benefit-to-risk profile for CF patients with P. aeruginosa infections. This is one study, with a distinct patient cohort and carefully prescribed goals. It’s a step, but an important one that can, if ultimately proven successful, help address the growing, global problem of antimicrobial resistance and measurably improve patients’ lives.”

    Estimated study completion date is early 2025.