Tag Archives: Food

Cross-country culinary microbes: Uncovering a shared kitchen microbiota across European homes

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

Humans are constantly exposed to diverse microbes, which can have positive and adverse health effects. Considerable exposure the these microorganisms occurs indoors, with the highest bacterial colonization reported in the kitchen. To date, no study has compared microbial communities in households across countries, which is necessary to determine if a core kitchen microbiota exists.

Study: Mapping the Kitchen Microbiota in Five European Countries Reveals a Set of Core Bacteria across Countries, Kitchen Surfaces, and Cleaning Utensils. Image Credit: Africa Studio / Shutterstock.com Study: Mapping the Kitchen Microbiota in Five European Countries Reveals a Set of Core Bacteria across Countries, Kitchen Surfaces, and Cleaning Utensils. Image Credit: Africa Studio / Shutterstock.com

About the study

A recent study published in the journal Applied and Environmental Microbiology mapped the microbiota on kitchen surfaces and cleaning utensils to determine any associations between microbiota, household objects, and country.

Kitchen surface and cleaning utensil samples were collected from 74 households in Hungary, France, Portugal, Romania, and Norway. Surface samples from different kitchen objects were obtained before dinner preparation.

Samples from cleaning sponges and cloths were obtained after food preparation and subsequently subjected to deoxyribonucleic acid (DNA) extraction and 16S ribosomal ribonucleic acid (rRNA) gene sequencing. Alpha diversity was analyzed using the Shannon index, observed features, and Faith’s phylogenetic diversity.

Linear mixed models were used to test Alpha diversity differences across sample types and countries. Beta diversity analysis was also performed through unweighted and weighted UniFrac, Jaccard, and Bray-Curtis. Univariate and multivariate analyses examined differences between sample counties and types.

Study findings

A total of 305 samples were analyzed and 3,487 sub-operational taxonomic units (sOTUs) were detected from over 18.8 million sequences. An average of 61,960 sequences were obtained for each sample, with 5,420 sequences isoalted for every sOTU.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

The kitchen microbiota comprised members from 793 genera from 297 families. The most frequent sequences were from the Proteobacteria phylum, followed by Firmicutes, Bacteroidota, and Actinobacteria phyla.

The most abundant genera and families were Acinetobacter, Pseudomonas, Enhydrobacter, Enterobacteriaceae, and Yersiniaceae. Forty-five sOTUs were identified in the Acinetobacter genus, with A. johnsonii being the most frequent Acinetobacter species.

Sixty-four sOTUs represented the Pseudomonas genus. Nineteen sOTUs were identified within the Enterobacteriaceae family.

There were 41, 12, 67, and 16 sOTUs within the Bacillus, Staphylococcus, Chryseobacterium, and Kocuria genera, respectively. Sixteen samples were positive for Listeria, one tested positive for Campylobacter, and none had Salmonella.

Notably, sOTUs related to S. enterica and Shigella/Escherichia were detected in samples from all five countries, whereas C. jejuni was present in Romanian, French, and Portuguese samples. Most of these pathogens were relatively less abundant.

Alpha diversity significantly differed between sample types and across countries. For example, samples from Portugal had fewer observed sOTUs than those from Norway and France, whereas samples from Norway, Hungary, and France had similar levels of Alpha diversity.

Similar results were observed with Faith’s phylogenetic diversity. Country differences were less evident when analyses were restricted to samples from cleaning utensils but remained significant when only surface samples were considered.

Handles had the highest Alpha diversity based on observed features, whereas sponges had the lowest. Principal component analysis (PCA) showed the tendency for microbiota clustering by sample type and country. Although the microbiota in cleaning cloths and sponges were similar, their similarity was greater across countries than between cloths and sponges.

if (g_displayableSlots.mobileBottomMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-mrec’); });
}

Surface samples were clustered by country, thus implying that the microbiota was more similar in surface samples within a country than a specific surface sample across countries. However, some exceptions to this finding were observed. For example, the microbiota on French handles was more similar to that on Hungarian handles than in other French surface samples.

Some bacteria in sponges and cloths with significantly different relative abundances were observed between countries as compared to surface samples. Sink samples had the highest bacteria with significantly different relative abundance between countries.

Eight genera/families were identified as the core microbiota, of which included Acinetobacter, Enterobacteriaceae, Pseudomonas, Psychrobacter, Bacillus, Staphylococcus, Enhydrobacter, and Chryseobacterium. Of these, Pseudomonas, Enhydrobacter, and Acinetobacter were the only taxa present in all samples, which also exhibited the highest mean relative abundances.

Enhydrobacter, Pseudomonas, and Enterobacteriaceae were identified as the core sOTUs. The core microbiota varied in relative abundance between sample types and countries. Among the core microbiota, the relative abundances of Psychrobacter, Chryseobacterium, Enterobacteriaceae, Pseudomonas, and Enhydrobacter significantly differed between countries.

There were significant differences in Acinetobacter and Staphylococcus between sample types, with the highest abundances in humid samples obtained from sinks, cloths, and sponges, as well as handles, respectively. Likewise, Bacillus exhibited significant differences between sample types, with the lowest abundance present in humid samples.

Conclusions

Despite the considerable differences in kitchen standards, dietary habits, and food preparation practices, a core microbiota of the kitchen comprising eight taxa at the genus/family level was identified, with three core bacteria observed at the sOTU level.

Overall, the study findings expand the knowledge base of the kitchen microbiota. Future studies should correlate these results with food safety behaviors and their impact on human health.

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Journal reference:
  • Moen, B., Langsrud, S., Berget, I., et al. (2023). Mapping the Kitchen Microbiota in Five European Countries Reveals a Set of Core Bacteria across Countries, Kitchen Surfaces, and Cleaning Utensils. Applied Environmental Microbiology. doi:10.1128/aem.00267-23

Japanese natto consumption may help realize a healthy and longer-living society

Health is wealth as the saying goes and new research now shows that it is possible to have a healthy, less stressed society through familiar and inexpensive foods. One such food might be the Japanese natto which is made from softened soybeans that have been boiled or steamed and fermented with a bacteria called Bacillus subtilis var. natto. Bacillus subtilis var. natto is found in soil, plants, animals, and the human stomach and intestines. Most of the natto consumed in Japan is made from the Miyagino strain.

A research group led by Professor Eriko Kage-Nakadai at the Graduate School of Human Life and Ecology, Osaka Metropolitan University, examined the effects of Bacillus subtilis var. natto consumption on the lifespan of the host using Caenorhabditis elegans worms. The researchers found that Caenorhabditis elegans fed Bacillus subtilis var. natto had a significantly longer lifespan than those fed the standard diet, and further elucidated that the p38 MAPK pathway and insulin/IGF-1-like signaling pathway, which are known to be involved in innate immunity and lifespan, were involved in the lifespan-enhancing effects of Bacillus subtilis var. natto. They also examined stress tolerance, which has been shown to have a correlation with longevity, and found that resistance to UV light and oxidative stress is enhanced.

For the first time, we were able to demonstrate the possibility of lifespan-extending effects of Caenorhabditis elegans through the ingestion of Bacillus subtilis var. natto. We hope that future experiments on mammals and epidemiological studies will help to realize a healthy and longer-living society if we can apply this research to humans.”

Professor Eriko Kage-Nakadai, Graduate School of Human Life and Ecology, Osaka Metropolitan University

The research results were published online in the Journal of Applied Microbiology on April 20, 2023.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

Source:
Journal reference:

Teramoto, N., et al. (2023) Impacts of Bacillus subtilis var. natto on the lifespan and stress resistance of Caenorhabditis elegans. Journal of Applied Microbiology. doi.org/10.1093/jambio/lxad082.

Antiviral drugs may be a new treatment strategy in the fight against Candida auris

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

Antiviral drugs can make antifungals work again.

That, at its simplest, is the approach Mohamed Seleem’s lab at the Center for One Health Research has found may be a key treatment strategy in the battle against Candida auris, a frighteningly deadly fungal pathogen discovered in 2009 that is considered an urgent threat by the Centers for Disease Control and Prevention (CDC).

Candida auris, first discovered in Japan as an ear infection, has a staggering 60 percent mortality rate among those it infects, primarily people with compromised health in hospitals and nursing homes.

Recently, Seleem and Ph.D. students Yehia Elgammal and Ehab A. Salama published a paper in the American Society for Microbiology’s Antimicrobial Agents and Chemotherapy journal detailing the potential use of atazanavir, an HIV protease inhibitor drug, as a new avenue to improving the effectiveness of existing antifungals for those with a Candida auris infection.

A perfect storm of antimicrobial resistance, global warming and the COVID-19 pandemic has resulted in the rapid spread of Candida auris around the world, said Seleem, director of the center, a collaboration between the Virginia-Maryland College of Veterinary Medicine and the Edward Via College of Osteopathic Medicine.

We don’t have lots of drugs to use to treat fungal pathogens. We have only three classes of antifungal drugs. With a fungal pathogen, it’s often resistant to one class, but then we have two other options. What’s scary about Candida auris is it shows resistance to all three classes of the antifungal.

The CDC has a list of urgent threats, but on that list there is just one fungal pathogen, which is Candida auris. Because it’s urgent, we need to deal with it.”

Mohamed Seleem, the Tyler J. and Frances F. Young Chair in Bacteriology at Virginia Tech

Widespread use of fungicides in agriculture, in addition to the three classes of antifungal drugs used widely in medicine, has contributed to fungal pathogens developing more resistance, particularly Candida auris.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

Also, its rise has been linked to rising global temperatures and to easier spread through hospitals filled with COVID-19 patients in recent years during the global pandemic.

Atazanavir, an HIV protease inhibitor drug, has been found by Seleem’s lab to block the ability of Candida auris to excrete antifungals through its efflux pumps.

Think of a boat taking on water and hoses siphoning that water out of the boat to keep it afloat. Atazanavir stops up the hoses.

That allows the azole class of antifungal drugs to not be expelled as easily and perform better against Candida auris, the Seleem lab’s research has found.

The research on atazanavir builds on work three years ago by Seleem’s lab, then at Purdue University, finding potentially similar benefit in lopinavir, another HIV protease inhibitor.

HIV protease drugs are already in wide use among HIV patients, who can also be extra susceptible to Candida auris. Some HIV patients have likely been taking HIV protease drugs and azole-class antifungals in tandem for separate purposes, providing a potential source of already existing data that can be reviewed on whether those patients had Candida auris and what effects the emerging pathogen had on them.

Repurposing drugs already on the market for new uses can allow those treatments to reach widespread clinical use much more rapidly than would happen with the discovery of an entirely new drug, as existing drugs have already been tested and approved by the Food and Drug Administration and have years of further observation of effects in prescriptive use.

In 2022, the Center for One Health Research received a $1.9 million grant from the National Institutes of Health for the Seleem lab’s research on repurposing already approved drugs for treating gonorrhea.

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Source:

Exploring nutritional factors during pregnancy and in infancy to find clues for childhood tooth decay

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

Researchers from Rochester Institute of Technology and the University of Rochester Medical Center are taking a closer look at nutritional factors during pregnancy and in infancy associated with severe tooth decay in young children.

Brenda Abu, assistant professor in RIT’s Wegmans School of Health and Nutrition and a researcher in maternal and child health, is collaborating on a study to investigate the Oral Microbiome in Early Infancy (OMEI) and Nutrition. Perinatal oral health expert Dr. Jin Xiao, associate professor at the Eastman Institute for Oral Health, is leading a large project funded by the National Institutes of Health’s Dental and Craniofacial Research.

The researchers will examine relationships between perinatal nutritive behavior-;such as dietary iron intake-;and nonnutritive behavior-;such as pica-;and the oral microbiome during pregnancy and early life. Abu and Xiao will assess the impact on infants’ early-life oral yeast colonization and infection and explore microbial compositions of pica substances. A two-year $380,000 award from the NIH supports Abu’s collaboration.

Pica is the compulsive eating of items lacking nutritional value. The behavior occurs most often in women and children, and substances consumed include seemingly harmless items, such as ice, or dangerous materials, such as dried paint, clay, soil, or metal. Pica may cause infections and deplete iron stores in pregnant women. The results can be devastating on maternal health and fetal development and carry long-lasting consequences, according to Abu.

People who have iron deficiency crave the taste and smell of non-food substances that make iron deficiency worse. Pregnant women who develop iron deficiency anemia have increased risk of miscarriages, low-birthweight babies, and other poor-birth outcomes.”

Brenda Abu, Assistant Professor, RIT’s Wegmans School of Health and Nutrition

Other risk factors revealed from this study could inform prenatal counseling for underserved women and predict and prevent “Early Childhood Caries,” or severe tooth decay in young children. Xiao’s research among underserved racial and ethnic minority groups has shown that the presence of certain bacteria and yeast in the mother’s mouth increases the child’s likelihood of developing the condition.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

“The OMEI + Nutrition is the first study that examines the relationship between nutritive and nonnutritive factors on perinatal oral microbiome among underserved U.S. pregnant women and their children,” said Dr. Xiao. “The data generated will strengthen the understanding of children’s oral microbiome development and their association to tooth decay.”

Abu’s collaboration with Xiao and other URMC researchers began with an earlier study assessing pica practice, oral health, and oral microbiome during pregnancy. The NIH award supports Abu’s career development and complements her international research focused on micronutrient nutrition and consequences among women and children living in Ghana. Findings from the current study exploring maternal nutrition and the oral microbiome in early infancy will influence the scope of Abu’s international research.

“With my training and expertise in nutrition, my long-term career goal is to bridge gaps in nutritional and oral research and generate groundbreaking interventions for early warning, early detections, and prevention of oral disease and iron deficiency among underserved mothers and young children,” Abu said.

Dr. Eli Eliav, professor and director of the UR’s Eastman Institute for Oral Health, is the adviser for the OMEI + Nutrition research. UR team members who will play key roles on the project include Steven Gill, professor of microbiology and immunology; Tong Tong Wu, associate professor of biostatistics and computational biology; and Dr. Kevin Fiscella, professor of family medicine. The entire team is listed online.

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

MGI Empowers the Completion of Nearly 60,000 Samples for The Million Microbiome of Humans Project

SHENZHEN, China, 10 May 2023 – MGI Tech Co. Ltd. (MGI), a company committed to building core tools and technology to lead life science, today shared that a total of nearly 60,000 samples have been sequenced among 21 institutes and over 10 participating nations throughout Europe, as part of the Million Microbiome of Humans Project (MMHP) that was officially launched in 2019.

Image Credit: MGI

The project was launched as a joint effort by the Karolinska Institute of Sweden, Shanghai National Clinical Research Center for Metabolic Diseases in China, the University of Copenhagen in Denmark, Technical University of Denmark, MetaGenoPolis at the National Research Institute for Agriculture, Food and Environment (INRAE) in France, and the Latvian Biomedical Research and Study Center. Relying on MGI’s core DNBSEQ™ technology, MMHP aims to sequence and analyze microbial DNA from a million human samples to construct a microbiome map of the human body and build the world’s largest human microbiome database.

“Countless studies have highlighted the importance of the microbiome in human health and disease. Yet, our knowledge of the composition of the microbiome in different parts of the body across countries, ages, sexes, and in relation to human health and disease remains limited,” said Duncan Yu, President of MGI. “Through MMHP, we are pushing forward microbial metagenomic research while empowering researchers within the microbiology community with access to MGI’s innovative sequencing technology. Despite a brief interruption by the COVID-19 pandemic, we are delighted to see such a monumental milestone merely four years into the project.”

The rise of microbial metagenomic sequencing​​​​​​​

Since the first description of human microbiome was published in 2010, the field of human microbiome has moved fast from sampling hundreds of individuals to thousands. Advances in genome sequencing has enabled researchers to better characterize the composition of the microbiome through identification of unculturable microbes. It has also allowed them the opportunity to study how the microbiome influences the development of some cancers and drug responses.

Metagenomics, coupled with high-throughput sequencing technologies, have revolutionized microbial ecology. Today, metagenomic sequencing has become both a powerful and popular tool for identifying and classifying complex microbial communities. It facilitates accelerated discovery of new markers that translate to virulence or antibiotic resistance, as well as de novo discovery and characterization of novel species and assembly of new genomes. Besides human microbiome, it is highly applicable in agricultural microbiome studies, environmental microbiome studies, pathogen surveillance and identification, and monitoring of antimicrobial resistance genes.

Indeed, the global metagenomic sequencing market was estimated to be worth USD 1.86 billion in revenue in 2022 and is poised to reach USD 4.33 billion by 2027, growing at a CAGR of 18.4% during the forecast period. In particular, Europe and Africa account for approximately 29.7% market share from the globe, ranking second after North America at 45.6%. Thanks to continuous technological innovations in high-throughput sequencing platforms, the metagenomic sequencing market within Europe and Africa is projected to grow from USD 551.7 million in 2022 to 1.29 billion by 2027, presenting huge market opportunities and providing local institutions with the impetus to invest and get involved.

​​​​​​​

Image Credit: MGI

An optimized workflow with MGI’s cutting-edge technology

Equipped with MGI’s innovative lab systems, the MMHP Consortium guarantees high-throughput processes, extreme precision, and high quality data output. The dedicated, one-stop workflow begins with sample transfer on MGISTP-7000* high-throughput automated sample transfer processing system. It then goes through nucleic acid extraction and library preparation on MGISP-960 high-throughput automated sample preparation system, a flexible and fully automated workstation capable of processing 96 samples per run. MGISP-960’s fully automatic operation design allows DNA extraction of 50,000 samples per year and library preparation of 25,000 samples per year. MGISP-Smart 8, the professional automated pipetting robot, equipped with an independent 8 pipetting channel can be used for the pooling, normalization and DNB making. Lastly, DNBSEQ-T7* ultra-high throughput sequencer and DNBSEQ-G400* versatile benchtop sequencer enables an efficient, productive, and streamlined sequencing experience.

“We are very focused on data quality, cost and time. After contrasting DNBSEQ™ technology by MGI with other sequencing technologies, we are convinced that MGI’s products have met high industry standards and provide a very good user experience,” commented Professor Lars Engstrand, Research Director of Center for Microbial Translational Research (CMTR) at Karolinska Institutet. “MGI’s platforms have enabled our team to upgrade our original microbiological research from 16SrRNA gene amplicon sequencing to shotgun metagenomic sequencing. I look forward to introducing more equipment and super-large projects as human microbiome emerges as a crucial diagnostic and treatment method in precision medicine.”

The next chapter in microbiomics

“Microbiomics will be part of precision medicine in the future, and data from the microbiome biobank that will result from MMHP will be leveraged for therapeutic R&D,” said Professor Stanislav Dusko Ehrlich of University College London, UK. “With 21 public and private institutions and 10+ countries currently involved in MMHP, we are actively looking for more research groups to take part in this landmark international microbiological research partnership and help generate the world’s biggest free-access human microbiome database.”

Since the inception of MMHP, MGI has played an important role in providing the program with state-of-the-art research platforms and technologies. Now entering its second phase towards sequencing and analyzing a final total of one million samples, the project welcomes further exchange and participation from relevant organizations to jointly promote research and applications of cutting-edge translational medicine in the field of microbiome. Those interested can fill the application form on www.mgi-tech.eu/mmhp.

About MGI

MGI Tech Co. Ltd. (MGI), headquartered in Shenzhen, is committed to building core tools and technology to lead life science through intelligent innovation. Based on its proprietary technology, MGI focuses on research & development, production and sales of sequencing instruments, reagents, and related products to support life science research, agriculture, precision medicine and healthcare. MGI is a leading producer of clinical high-throughput gene sequencers*, and its multi-omics platforms include genetic sequencing*, medical imaging, and laboratory automation. MGI’s mission is to develop and promote advanced life science tools for future healthcare. For more information, please visit the MGI website or connect with us on TwitterLinkedIn or YouTube.

*Unless otherwise informed, StandardMPS and CoolMPS sequencing reagents, and sequencers for use with such reagents are not available in Germany, Spain, UK, Sweden, Italy, Czech Republic, Switzerland and Hong Kong (CoolMPS is available in Hong Kong).

*For Research Use Only. Not for use in diagnostic procedures (except as specifically noted).

$(function() { Azom.wireUpVideoThumbnailLazyLoading(); });

Breast milk microbes shape infant gut health

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

A new paper published in the Frontiers in Microbiology explores the contribution of human breast milk to the establishment of the infant gut microbiome.

Study: Human milk-associated bacterial communities associate with the infant gut microbiome over the first year of life. Image Credit: Pavel Ilyukhin / Shutterstock.com Study: Human milk-associated bacterial communities associate with the infant gut microbiome over the first year of life. Image Credit: Pavel Ilyukhin / Shutterstock.com

Introduction

Breastfeeding is encouraged as the first and exclusive food of infants for at least the first six months of life. In addition to its nutritional content, breast milk contributes significantly to the formation of the infant gut microbiome. This is because of its high content of immune cells, oligosaccharides carrying glycosyl residues, fatty acids, and some microbes.

Both breast milk bacteria and skin microbes from the maternal nipple reach and establish themselves in the infant’s gut. Bacteria may be shielded by secretory immunoglobulin A (sIgA) covering the immune system, thus allowing them to enter the gut intact.   

The infant gut microbiome (IGMB) is important for both infant development and immunity, as well as modulating conditions like atopy and body mass composition. However, earlier research on potential associations between the IGMB and breast milk microbiota has been limited to analyzing samples from corresponding time points.

The current study included almost 190 dyads from New Hampshire. Breast milk and infant stool samples were collected at around six weeks, four months, six months, nine months, and one year from birth, which allowed the scientists to identify correlations that developed over time.

What did the study show?

In the study population, with a mean age of 32 years, most were White and had a normal body mass index (BMI) during pregnancy. About 25% of deliveries occurred through Cesarean section (C-section), and antibiotic exposure prior to lactation occurred in over half of mothers.

Most babies were almost full term at birth, with only 3% being exposed to antibiotics by four months of life. By one year, about 30% of infants had been exposed to antibiotics.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

About 75% and 40% of infants did not receive any formula up to six weeks and four months, respectively. Most infants began eating solid food by six months.

Three breast milk microbiome types (BMTs) were identified in the six-week breast milk samples. These could be differentiated by the relative proportions of four bacterial genera, including Streptococcus, Staphylococcus, Pseudomonas, and Acinetobacter, as well as by the microbial diversity.

At six weeks, the gut microbiome in infants exhibited four six-week infant gut microbiome types (6wIGMTs). These had different abundances of Bifidobacterium, Bacteroides, Clostridium, Streptococcus, and Escherichia/Shigella.

The 6wIGMT correlated with the 6wBMT in male infants and those born by C-section. Notably, the same microbe was likely to be the most abundant within the dyads at this point.

By age one, the predominant difference in microbiome composition was due to Bacteroides. There was no association between the 6wBMT and 12mIGMT, which is likely due to the intake of solid foods by infants at this age. The transition to a primarily solid diet causes the infant microbiome to be dominated by other microbes, such as Bifidobacterium and Bacteroidetes, both of which are more abundant in the adult gut.

At six weeks, the BMT was associated with 6wIGMT in all infants but more strongly in male infants born by C-section. Male infants also had a higher proportion of microbes from breast milk present in their stool.

While infants delivered by C-section have a reduced colonization by maternal stool microbiota, their colonization by breast milk microbiota is higher than vaginally delivered infants.”

This could be due to the reduced microbial diversity and Bacteroides depletion in the IGMB of C-section-delivered infants, which makes it easier for breast milk microbes to colonize the gut.

if (g_displayableSlots.mobileBottomMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-mrec’); });
}

Male infants appeared to show a greater effect of the breast milk microbes on their gut microbiome. This may be because they exhibit less microbial diversity, with fewer Clostridiales and more Enterobacteriales abundance than is observed in female infants. The male infant’s gut microbiota is also more susceptible to stress and environmental exposures.

Overall, the breast milk microbial communities correlated most strongly with those found in infant stool samples that were collected at a later time point. For example, Pantoea in breast milk at four and six months was correlated with infant stool collected at nine and twelve months, respectively. These findings require further validation in future research.

What are the implications?

The identification of microbial clusters in human milk and infant feces that were shared within the mother-infant pair at six weeks is a striking finding in this study. The delay in cluster sharing and the association with C-section were associated with stronger correlations.

The findings of this study agree with earlier reports on the associations of various microbes in breast milk and the infant gut. Notably, the current study adds to previous data by identifying correlations between different taxa in these two sites.

The scientists postulate that microbes within communities may show direct interactions, such as the transmission of a microbe present in the infant oral cavity to the breast in this case, as well as the intake of breast milk by the infant. In addition, they may show indirect interactions through nutrients like fatty acids and milk sugars or other bacterial metabolites that influence both communities.

With the observed shift in breast milk microbial diversity over time, long-term studies may be needed to understand the breadth of microbial exposures during infancy. The change in IGMTs over time should also be better characterized and their relevance assessed.

These results suggest that milk microbial communities have a long-term effect on the infant gut microbiome both through sharing of microbes and other molecular mechanisms.”

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Journal reference:
  • Lundgren, S. N., Madan, J. C., Karagas, M. R., et al. (2023). Human milk-associated bacterial communities associate with the infant gut microbiome over the first year of life. Frontiers in Microbiology. doi:10.3389/fmicb.2023.1164553.

Anticoronavirals: the development of COVID-19 therapies and the challenges that remain

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

In a recent article published in Nature Microbiology, researchers highlighted the pace of development of coronavirus disease 2019 (COVID-19) therapies during the pandemic and the challenges that hinder the widespread availability of anticoronavirals.

Study: Therapeutics for COVID-19. Image Credit: Viacheslav Lopatin/Shutterstock.com
Study: Therapeutics for COVID-19. Image Credit: Viacheslav Lopatin/Shutterstock.com

Background

COVID-19 is the third coronavirus disease in the past 20 years after severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). While the two predecessors caused severe mortality, they did not cause a pandemic. On the contrary, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered a pandemic, and by 21 February 2023, it had caused more than 757 million confirmed cases, including >6.8 million deaths worldwide.

Vaccines and monoclonal antibody (mAb) treatments for COVID-19 became available within a year of the pandemic. Yet, there is a substantial need for more effective therapeutics to treat unvaccinated and immunocompromised patients and those whose vaccine immunity waned over time.

About the study

In this study, the authors highlighted four stages of SARS-CoV-2 infection that require different therapeutic interventions as critical for identifying COVID-19 therapeutic targets. At stage 1, when viral replication begins inside the host, oral or intravenous administration of monoclonal antibodies and antiviral therapies are effective. However, an ideal time for prophylactic administration of vaccines is Stage 0 preceding the infection.

Clinical trials have established that mAbs and antivirals effectively combat COVID-19 when administered up to 10 days after symptom onset and within three to five days following the onset of symptoms, respectively. COVID-19 patients in stage 2 develop viral pneumonia, cough and fever, lung inflammation causing shortness of breath, and lung aberrations, such as ground glass opacities.

The most serious is stage 3 characterized by a hyperinflammatory state or acute respiratory distress syndrome (ARDS). Some patients might also develop coagulation disorders or shock or systemic inflammatory response syndrome (SIRS). Thus, at stage 3, a patient needs antiviral drugs and immunomodulatory therapy.

Stage 4 represents post-COVID-19 conditions when patients experience hyperinflammatory illnesses, e.g., multi-system inflammatory syndrome in children (MISC), following acute SARS-CoV-2 infection. Unfortunately, possible preventative measures and treatment for post-acute sequelae of SARS-CoV-2 (PASC) are not fully understood. It is a growing area of unmet medical need; thus, extensive research efforts are ongoing to classify PASC, which might be a conglomeration of several syndromes, and determine its cause(s).

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

The National Institutes of Health (NIH) Treatment Guidelines Panel makes recommendations for the treatment and prevention of COVID-19. Early in the pandemic, clinicians used azithromycin and hydroxychloroquine as a possible COVID-19 treatment for hospitalized patients based on in vitro evidence of their synergistic effect on SARS-CoV-2 infection. Later, clinical trials found this combination ineffective. Similarly, the NIH panel did not specify recommendations for empirical antimicrobials.

The NIH rejected giving vitamin/mineral supplements, e.g., zinc, for hospitalized COVID-19 patients. On the contrary, they recommended prompt use of supplemental oxygenation and high-flow nasal cannula in patients with ARDS. In the absence of effective treatments, clinical recommendations by NIH continue to change and evolve.

Early drug repurposing efforts targeted nucleotide prodrugs, e.g., remdesivir (or GS-5734), AT-527, favipiravir, and molnupiravir (or MK-4482). However, only three antivirals received full Emergency Use Authorization (EUA) approval from the United States Food and Drug Administration (US-FDA), remdesivir, molnupiravir, and nirmatrelvir.

Pre-clinical characterization of remdesivir for other coronaviruses, pharmacokinetic and safety evaluation in humans in a failed clinical trial for Ebola virus, all acquired before the beginning of the COVID-19 pandemic, enabled rapid progression of remdesivir.

A phase 3 study conducted among patients in outpatient facilities and nursing facilities showed that remdesevir administration within seven days of symptom onset decreased hospitalization risk by 87%. Thus, its approval extended to high-risk non-hospitalized patients as well. Currently, phase 1b/2a study for inhaled remdesivir, and pre-clinical evaluation of an oral prodrug based on remdesivir is ongoing.

Another randomized phase III trial evaluated ivermectin, metformin, and fluvoxamine, all repurposed drug candidates, for early COVID-19 treatment of overweight or obese adults. Earlier pivotal efficacy and clinical studies found that molnupiravir provided no clinical benefit in hospitalized COVID-19 patients.

Conversely, the MOVe-OUT outpatient study demonstrated that treatment initiated within five days of symptom onset reduced the hospitalization risk or death. Accordingly, molnupiravir attained an EUA in the US on in late 2021 for treatment of mild-to-moderately ill COVID-19 patients at high risk of progression to severe disease. However, an outpatient study suggested that molnupiravir might augment SARS-CoV-2 evolution in immunocompromised individuals.

if (g_displayableSlots.mobileBottomMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-mrec’); });
}

In the USA, multiple initiatives have been undertaken to identify candidate agents that may be repurposed as COVID-19 drugs. For instance, the Bill and Melinda Gates Foundation launched the Therapeutics Accelerator in March 2020, wherein they adopted a three-way approach to test approved drugs, screen drug repositories, and evaluate novel small molecules, including mAbs against SARS-CoV-2.

Encouragingly, apilimod, a PIKfyve kinase inhibitor developed for treating autoimmune diseases, is being tested for COVID-19 in clinical studies. Likewise, multiple clinical trials are ongoing for camostat mesilate, an inhibitor of transmembrane protease serine 2 (TMPRSS2), an approved chronic pancreatitis treatment in Japan.

Among anti-inflammatory and immunomodulating drugs, dexamethasone, a corticosteroid, baricitinib, a Janus kinase (JAK) inhibitor, and tocilizumab have received FDA approval. Among mAb therapies, casirivimab with imdevimab and bamlanivimab with etesevimab, Sotrovimab, Bebtelovimab, Tixagevimab–cilgavimab have received FDA approval. However, as SARS-CoV-2 continues to evolve, changes in the spike protein led to EUAs being withdrawn for all mAb therapies due to loss of efficacy.

Conclusions

There is a vast knowledge gap regarding COVID-19 pathogenesis. Despite the absence of a viral reservoir, severe disease persists for weeks or even months after COVID-19 recovery. Another intriguing area of investigation is why autoantibodies increase over time during COVID-19. In February 2022, the government of the United States of America (USA) started a flagship program, RECOVER, to understand, prevent and treat COVID-19-related long-term health effects.

Amid decreasing vaccine uptake and waning efficacy of mAbs as SARS-CoV-2 mutates, there is a need for new, safe, and effective COVID-19 therapies for population-level deployment and the potential to reduce resistance development. Researchers need to accelerate research targeting small molecule candidates that would mechanistically target the conserved region of SARS-CoV-2 and not become ineffective across mutant strains.

To be prepared for another pandemic, a large repository of small molecules that have already progressed through early pre-clinical and clinical evaluation is needed to develop drugs, like remdesivir, developed in a short span of two years.

More importantly, research efforts should continue to advance the development of antivirals for other pathogens, including coronaviruses, in preparation for the next pandemic.

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Journal reference:

How inert, sleeping bacteria spring back to life

Solving a riddle that has confounded biologists since bacterial spores -; inert, sleeping bacteria -; were first described more than 150 years ago, researchers at Harvard Medical School have discovered a new kind of cellular sensor that allows spores to detect the presence of nutrients in their environment and quickly spring back to life.

It turns out that these sensors double as channels through the membrane and remain closed during dormancy but rapidly open when they detect nutrients. Once open, the channels allow electrically charged ions to flow out through the cell membrane, setting in motion the shedding of protective spore layers and the switching on of metabolic processes after years -; or even centuries -; of dormancy.

The team’s findings, published April 28 in Science, could help inform the design of ways to prevent dangerous bacterial spores from lying dormant for months, even years, before waking up again and causing outbreaks.

This discovery solves a puzzle that’s more than a century old. How do bacteria sense changes in their environment and take action to break out of dormancy when their systems are almost completely shut down inside a protective casing?”

David Rudner, study senior author, professor of microbiology, Blavatnik Institute at HMS

How sleeping bacteria come back to life

To survive adverse environmental conditions, some bacteria go into dormancy and become spores, with biological processes put on hold and layers of protective armor around the cell.

These biologically inert mini fortresses allow bacteria to wait out periods of famine and shield themselves from the ravages of extreme heat, dry spells, UV radiation, harsh chemicals, and antibiotics.

For more than a century, scientists have known that when the spores detect nutrients in their environment, they rapidly shed their protective layers and reignite their metabolic engines. Although the sensor that enables them to detect nutrients was discovered almost 50 years ago, the means of delivering the wake-up signal, and how that signal triggers bacterial revival remained a mystery.

In most cases, signaling relies on metabolic activity and often involves genes encoding proteins to make specific signaling molecules. However, these processes are all shut off inside a dormant bacterium, raising the question of how the signal induces the sleeping bacteria to wake up.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

In this study, Rudner and team discovered that the nutrient sensor itself assembles into a conduit that opens the cell back up for business. In response to nutrients, the conduit, a membrane channel, opens, allowing ions to escape from the spore interior. This initiates a cascade of reactions that allow the dormant cell to shed its protective armor and resume growth.

The scientists used multiple avenues to follow the twists and turns of the mystery. They deployed artificial intelligence tools to predict the structure of the intricately folded sensor complex, a structure made of five copies of the same sensor protein. They applied machine learning to identify interactions between subunits that make up the channel. They also used gene-editing techniques to induce bacteria to produce mutant sensors as a way to test how the computer-based predictions played out in living cells.

“The thing that I love about science is when you make a discovery and suddenly all these disparate observations that don’t make sense suddenly fall into place,” Rudner said. “It’s like you’re working on a puzzle, and you find where one piece goes and suddenly you can fit six more pieces very quickly.”

Rudner described the process of discovery in this case as a series of confounding observations that slowly took shape, thanks to a team of researchers with diverse perspectives working together synergistically.

Along the way, they kept making surprising observations that confused them, hints that suggested answers that didn’t seem like they could possibly be true.

Stitching the clues together

One early clue emerged when Yongqiang Gao, an HMS research fellow in the Rudner lab, was conducting a series of experiments with the microbe Bacillus subtilis, commonly found in soil and a cousin to the bacterium that causes anthrax. Gao introduced genes from other bacteria that form spores into B. subtilis to explore the idea that the mismatched proteins produced would interfere with germination. Much to his surprise, Gao found that in some cases the bacterial spores reawakened flawlessly with a set of proteins from a distantly related bacterium.

Lior Artzi, a postdoctoral fellow in the lab at the time of this research, came up with an explanation for Gao’s finding. What if the sensor was a kind of receptor that acts like a closed gate until it detects a signal, in this case a nutrient like a sugar or an amino acid? Once the sensor binds to the nutrient, the gate pops open, allowing ions to flow out of the spore.

In other words, the proteins from distantly related bacteria would not need to interact with mismatched B. subtilis spore proteins, but instead simply respond to changes in the electric state of the spore as ions begin to flow.

Rudner was initially skeptical of this hypothesis because the receptor didn’t fit the profile. It had almost none of the characteristics of an ion channel. But Artzi argued the sensor might be made up of multiple copies of the subunit working together in a more complex structure.

AI has entered the chat

Another postdoc, Jeremy Amon, an early adopter of AlphaFold, an AI tool that can predict the structure of proteins and protein complexes, was also studying spore germination and was primed to investigate the nutrient sensor.

The tool predicted that a particular receptor subunit assembles into a five-unit ring known as a pentamer. The predicted structure included a channel down the middle that could allow ions to pass through the spore’s membrane. The AI tool’s prediction was just what Artzi had suspected.

Gao, Artzi, and Amon then teamed up to test the AI-generated model. They worked closely with a third postdoc, Fernando Ramírez-Guadiana and the groups of Andrew Kruse, HMS professor of biological chemistry and molecular pharmacology, and computational biologist Deborah Marks, HMS associate professor of systems biology.

They engineered spores with altered receptor subunits predicted to widen the membrane channel and found the spores awoke in the absence of nutrient signals. On the flip side, they generated mutant subunits that they predicted would narrow the channel aperture. These spores failed to open the gate to release ions and awake from stasis in the presence of ample nutrients to coax them out of dormancy.

In other words, a slight deviation from the predicted configuration of the folded complex could leave the gate stuck open or shut, rendering it useless as a tool for waking up the dormant bacteria.

Implications for human health and food safety

Understanding how dormant bacteria spring back into life is not just an intellectually tantalizing puzzle, Rudner said, but one with important implications for human health. A number of bacteria that are capable of going into deep dormancy for stretches of time are dangerous, even deadly pathogens: The powdery white form of weaponized anthrax is a made up of bacterial spores.

Another dangerous spore-forming pathogen is Clostridioides difficile, which causes life-threatening diarrhea and colitis. Illness from C. difficile typically occurs after use of antibiotics that kill many intestinal bacteria but are useless against dormant spores. After treatment, C. difficile awakens from dormancy and can bloom, often with catastrophic consequences.

Eradicating spores is also a central challenge in food-processing plants because the dormant bacteria can resist sterilization due to their protective armor and dehydrated state. If sterilization is unsuccessful, germination and growth can cause serious foodborne illness and massive financial losses.

Understanding how spores sense nutrients and rapidly exit dormancy can enable researchers to develop ways to trigger germination early, making it possible to sterilize the bacteria, or block germination, keeping the bacteria trapped inside their protective shells, unable to grow, reproduce, and spoil food or cause disease.

Source:
Journal reference:

Gao, Y., et al. (2023) Bacterial spore germination receptors are nutrient-gated ion channels. Science. doi.org/10.1126/science.adg9829.

GW one of 18 clinical trial sites across the United States testing monkeypox vaccine in adolescents

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

The National Institutes of Health trial to evaluate the mpox (previously known as monkeypox) vaccine JYNNEOS has now entered the next stage and is studying the immune responses to and the safety of the vaccine in adolescents. The George Washington University is one of 18 clinical trial sites across the United States that have launched this stage testing the JYNNEOS vaccine.

The JYNNEOS vaccine was approved by the U.S. Food and Drug Administration for use in adults in 2019 and, in 2022, was authorized for use in people under 18 years of age on an emergency use basis. The latest stage of the trial, which is sponsored by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, will look to see if the vaccine is safe and triggers an immune response in adolescents ages 12 to 17 that is comparable to adults ages 18 to 50 years. GW’s participation is funded through a contract with Frederick National Laboratory for Cancer Research, operated by Leidos Biomedical Research in Frederick, Maryland, which provides scientific support to NIH.

We are excited to have launched the next stage of this clinical trial, which can help determine if this vaccine can be used to protect adolescents should there be another large outbreak in the United States or some other part of the world.”

David Diemert, clinical director, George Washington University Vaccine Research Unit and professor of medicine, GW School of Medicine and Health Sciences

The GW Vaccine Research Unit is a collaboration between the Departments of Medicine and Microbiology, Immunology and Tropical Medicine located at the George Washington University School of Medicine and Health Sciences, and the GW Medical Faculty Associates. The GW Vaccine Research Unit conducts clinical trials of experimental products that are being developed for the prevention of infectious diseases.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

The clinical investigators at GW and the other sites plan to test 135 adults ages 18 to 50 who will serve as a comparison group in this stage of the study. The researchers will also recruit about 315 adolescents ages 12 to 17 years. All of the recruits will get the standard dose of the vaccine delivered subcutaneously, Diemert said.

The trial will last for 13 months and investigators will check for safety and to see if the antibody response in adolescents in the study are comparable to that of adults.

Mpox historically occurs in West and Central Africa, but in 2022, a large outbreak began in the United States and other countries around the world where mpox is uncommon. The virus spreads through close contact with an infected person or animal.

Although kids in the United States rarely get mpox, experts say children and teens can and do get this painful and sometimes deadly disease.

“Having a safe and effective vaccine at the ready would help prepare the United States and other countries for the next outbreak of this disease,” Diemert said.

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Can a disrupted gut microbiota contribute to anorexia nervosa pathogenesis?

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

In a recent study published in the journal Nature Microbiology, researchers investigated whether intestinal microbial alterations contribute to anorexia nervosa (AN) pathogenesis.

AN, a disorder associated with altered eating, has caused considerable mortality, especially among women. However, therapies based on scientific evidence are scarce. AN pathogenesis likely involves several environmental and genetic factors. Studies have reported intestinal microbial dysbiosis among AN-affected individuals. However, data were obtained from small sample sizes, and genus-level microbial alterations were analyzed by amplicon sequencing.

Study: The gut microbiota contributes to the pathogenesis of anorexia nervosa in humans and mice. Image Credit: Tatiana Shepeleva / ShutterstockStudy: The gut microbiota contributes to the pathogenesis of anorexia nervosa in humans and mice. Image Credit: Tatiana Shepeleva / Shutterstock

About the study

In the present study, researchers assessed the association between the intestinal microbiome and AN.

The team performed metabolomics and shotgun metagenomic analyses on serum and fecal samples, respectively, that were obtained from women with AN (n=77) and age- and sex-matched healthy controls (n=70). Further, the fecal microbiome was transplanted from anorexia nervosa cases to murine animals fed calories-limited diets over three weeks to simulate AN eating behavior for in vivo analysis. In addition, the team explored causal associations in silico by bidirectional mediation analysis. The intestinal microbiome was analyzed at functional, taxonomic, and genetic levels.

The team used the eating disorder inventory-3 (EDI-3) questionnaire to assess eating behaviors and insulin resistance was assessed using the homoeostatic model assessment for insulin resistance (HOMA-IR) tool. The team examined covariations between bacterial abundance at species and genus levels and clinical variables for AN cases and controls. Linear regression modeling was performed, adjusting for confounders such as age, smoking status, medications, and body mass index (BMI).

Further, the team evaluated the growth dynamics of gut bacteria by calculating peak-to-trough ratios (PTR) using the metagenomic dataset. The functional modules of gut bacteria were identified using gut-brain modules (GBMs) and gut metabolic modules (GMMs). Differences in bacterial genomics were explored based on the Canberra distance of bacterial structural variant profiles.

​​​​​​​Graphical abstract of the study workflow and findings.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

Results

Several bacterial organisms (including Clostridium) were altered among individuals with anorexia nervosa and were associated with mental well-being and eating behavior estimates. Bacterial functional-type modules related to neurotransmitter degradation were enriched among those with anorexia nervosa. Further, several structural variants (SVs) in bacterial organisms were associated with the metabolic characteristics of anorexia nervosa.

The findings indicated a probable role of the intestinal microbiome in AN-associated changes concerning satiety and the metabolism of secondary bile acids. The metabolomic analysis indicated an elevation in metabolites linked to lowered food consumption (including taurine-hyodeoxycholic acid, taurine-α-muricholic acid, and indole-3-propionic acid molecules). Causal inference analysis indicated that serological bacterial metabolites probably mediate the effect of gut microbial alterations on anorexia nervosa. At the phylum level, AN microbiome samples showed lowered Actinobacteriota and Bacteroidota counts. Among families of bacteria, Christensenellaceae species, particularly CAG-138, showed the most significant enrichment in AN.

At the genus level, elevated Lactobacillus counts were observed in the AN microbiota. The Ruminococcacea-enterotype was more prevalent in cases of AN. Species-level analysis indicated greater β-diversity among AN-affected women. In AN, Roseburia inulinivorans and Roseburia intestinalis were depleted, whereas those of Erysipelatoclostridium ramosum, Blautia species CAG, and Enterocloster bolteae innocuum (Clostridium) were increased. Clostridium counts correlated positively with eating disorder scores. The abundance of Bifidobacterium and Parasutterella, in absolute terms, showed positive correlations with perfectionism and body dissatisfaction, respectively.

Absolute Brachyspira count showed a positive association with ‘drive for thinness’ markers in anorexia nervosa. Median values for PTR markedly differed between individuals with AN and controls. Women with AN were leaner, had lower fasting serological insulin, glucose, and C-reactive protein (CRP) levels, and were more sensitive to insulin than controls. Bacterial organisms with significant growth retardation, among AN case individuals included Alistipes finegoldii, Akkermansia muciniphila, Eubacterium siraeum, Coprococcus catus, SS3/4, and Odoribacter splanchnicus.

In addition, the intestinal virome was altered among AN-affected individuals, including lowered bacterial-viral interactions, due to attenuated interactions of viruses with short-chain fatty acid (SCFA)-producing bacteria, including Roseburia inulinivorans, Roseburia hominis, and Faecalibacterium prausnitzii. The team observed greater viral richness and Shannon diversity in the fecal samples of AN cases compared to controls. Notably, 25/30 viruses increased in AN were Lactococcus bacteriophages. The abundance of GBMs for serotonin synthesis and degradation of tryptophan, glutamate, and dopamine, were enriched in AN.

The team detected 2,423 and 5,056 variable SVs and deletion SVs, respectively, across 56 species of bacteria, including Bacteroides uniformis, Faecalibacterium prausnitzii, Parabacteroides distasonis, Methanobrevibacter smithii. Individuals with AN lacking the genomic region of B. uniformis had greater scores for self-denial and bulimia. The genetic deletion in B. uniformis could result in the deficiency of thiamine, a vitamin associated with intestinal and mental health. The serotonin synthesis module causally affected BMI through glycoursodeoxycholic acid, which is upregulated by serotonin.

Serum leucine mediated the influence of B. vulgatus counts on glucose homeostasis. Mice receiving AN individuals’ fecal transplants initially lost more weight with a slower gain of weight with time than those receiving fecal transplants of control individuals. The finding was related to greater levels of hypothalamic appetite-suppressing genes and thermogenesis-associated genes in the adipose tissues of mice receiving fecal transplants from individuals with AN.

Based on the study findings, gut microbial disruptions may contribute to the pathogenesis of AN.

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Journal reference: