Tag Archives: Pathology

Genomic study reveals Babesia duncani’s pathogenicity and virulence

‘Tis the season for hiking now that spring has arrived and temperatures are on the upswing. But with hikes come insect bites and on the increase in North America is babesiosis, a malaria-like disease spread especially between May and October by a tick.

Indeed, recent research suggests an increase in the incidence of diseases transmitted by ticks around the world, not just the United States and Canada, due likely to climate change and other environmental factors. Among the tick-borne pathogens, Babesia parasites, which infect and destroy red blood cells, are considered a serious threat to humans and animals. All cases of human babesiosis reported in the United States have been linked to either Babesia microti, B. duncani, or a B. divergens-like species.

Now a research team led by scientists at the University of California, Riverside, and Yale University reports the first high-quality nuclear genome sequence and assembly of the pathogen B. duncani. The team also determined the 3D genome structure of this pathogen that resembles Plasmodium falciparum, the malaria-causing parasite.

“Our data analysis revealed that the parasite has evolved new classes of multigene families, allowing the parasite to avoid the host immune response,” said Karine Le Roch, a professor of molecular, cell and systems biology at UC Riverside, who co-led the study with Choukri Ben Mamoun, a professor of medicine at Yale University.

According to Le Roch, who directs the UCR Center for Infectious Disease Vector Research, the study, published today in Nature Microbiology, not only identifies the molecular mechanism most likely leading to the parasite’s pathogenicity and virulence, but also provides leads for the development of more effective therapies.

By mining the genome and developing in vitro drug efficacy studies, we identified excellent inhibitors of the development of this parasite -; a pipeline of small molecules, such as pyrimethamine, that could be developed as effective therapies for treating and better managing human babesiosis. Far more scientific and medical attention has been paid to B. microti. The genome structure of B. duncani, a neglected species until now, will provide scientists with important insights into the biology, evolution, and drug susceptibility of the pathogen.”

Karine Le Roch, professor of molecular, cell and systems biology at UC Riverside

Human babesiosis caused by Babesia duncani is an emerging infectious disease in the U.S. and is often undetected because healthy individuals do not usually show symptoms. It has, however, been associated with high parasite burden, severe pathology, and death in multiple cases. Despite the highly virulent properties of B. duncani, little was known about its biology, evolution, and mechanism of virulence, and recommended treatments for human babesiosis against B. duncani are largely ineffective.

A strong immune system is required to fight the pathogen. A compromised immune system could lead to flu-like illness. The tick that spreads babesiosis is mostly found in wooded or grassy areas and is the same tick that transmits bacteria responsible for Lyme disease. As a result, around 20% of patients with babesiosis are co-infected with Lyme disease.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

B. duncani mostly infects deer, which serve as the reservoir host during the pathogen’s asexual development. The parasite’s sexual cycle occurs in the tick after the tick bites the infected deer. When this tick bites humans, infection begins. The full life cycle of Babesia parasites has not yet been determined. The tick that spreads babesiosis, called Dermacentor albipictus, lives longer than mosquitoes and could facilitate a long life cycle for B. duncani.

Even though scientists are discovering more Babesia species, diagnostics are mostly developed for B. microti. Le Roch is already working with Stefano Lonardi, a professor of computer science and engineering at UCR and co-first author of the study, on new Babesia strains that have evolved.

“The Babesia genomes are not very long,” said Lonardi, who assembled the B. duncani strain. “But they are challenging to assemble due to their highly repetitive content and can require years of research. Once the genome is assembled and annotated, it can provide valuable information, such as how the genes are organized, which genes are transcribed during infection, and how the pathogen avoids the host’s immune system.”

In older and immunocompromised people, if B. duncani is left unattended, babesiosis could worsen and lead to death. Once the pathogen enters the body and red blood cells start to get destroyed, fever, headache, and nausea can follow. People who get bitten by the ticks often don’t feel the bite, which complicates diagnosis. Skin manifestations of babesiosis are rare, Lonardi said, and difficult to separate from Lyme disease.

Le Roch and Lonardi urge people to be mindful of ticks when they go hiking.

“Check yourself for tick bites,” Le Roch said. “When you see your physician don’t forget to let them know you go hiking. Most physicians are aware of Lyme disease but not of babesiosis.”

Next the team plans to study how B. duncani survives in the tick and find novel vector control strategies to kill the parasite in the tick.

Le Roch, Mamoun, and Lonardi were joined in the study by colleagues at UCR, Yale School of Medicine, Université de Montpellier (France), Instituto de Salud Carlos III (Spain), Universidad Nacional Autónoma de México, and University of Pennsylvania. Pallavi Singh at Yale and Lonardi contributed equally to the study. The B. duncani genome, epigenome, and transcriptome were sequenced at UCR and Yale.

The study was supported by grants from the National Institutes of Health, Steven and Alexandra Cohen Foundation, Global Lyme Alliance, National Science Foundation, UCR, and Health Institute Carlos III.

Source:
Journal reference:

Singh, P., et al. (2023). Babesia duncani multi-omics identifies virulence factors and drug targets. Nature Microbiology. doi.org/10.1038/s41564-023-01360-8.

Beclin-1 plays a key role in endometrial reprogramming for successful establishment of pregnancy

Throughout a woman’s reproductive life, the endometrium, the mucous membrane lining the uterus, goes through cyclical remodeling. It thickens during the menstrual cycle in preparation for embryo implantation, and it is shed during menstruation when there is no fertilization.

Researchers at Baylor College of Medicine and collaborating institutions are investigating little-known factors directing uterine remodeling to advance the understanding of this process and provide new insights into fertility-associated gynecological conditions. They report today in the journal Developmental Cell that autophagy protein Beclin-1 governs endometrial remodeling and the establishment of pregnancy in animal models by regulating autophagy, a natural process that digests and recycles cellular components.

One of our main goals is to understand biological processes that might be associated with pregnancy loss. In this study, we looked to understand the role Beclin-1 plays in endometrial reprogramming for the successful establishment of pregnancy.”

Dr. Rama Kommagani, corresponding author, associate professor in the Departments of Pathology and Immunology and Molecular Virology and Microbiology at Baylor

In the first part of this study, Kommagani and his colleagues found that Beclin-1 is essential for the establishment of pregnancy in mouse models. When they removed Beclin-1 specifically from uterine cells, the uteri did not develop properly, and this led to infertility caused by reduced uterine receptivity and failed embryo implantation.

In addition, molecular analysis of uteri revealed that Beclin-1 is necessary for endometrial programming of stem cells that leads to the development of uterine glands and other structures that are essential for uterine maturation.

“We also studied the mechanism by which Beclin-1 regulates uterine development,” Kommagani said. “Beclin-1 is known to regulate two distinct natural processes called autophagy and apoptosis that help maintain many normal functions in organisms. We investigated whether one of these two processes or both were involved.”

The team found that disabling apoptosis in the presence of Beclin-1did not alter the normal remodeling of the uterus and gland development. Importantly, restoring only Beclin-1-driven autophagy, but not apoptosis, promoted normal uterine remodeling.

“After birth, the uterus goes through a multistep process of development that is required for successful pregnancies in the future. Any deficiencies along this process can have a ripple effect on the ability to conceive and for the pregnancy to succeed,” Kommagani said. “We discovered that one of the steps involves Beclin-1-mediated autophagy, which acts as a molecular switch that governs uterine reprograming by maintaining the endometrial progenitor stem cells that support uterine remodeling.”

The findings have encouraged the researchers to explore the possibility of developing practical applications both in the field of contraceptives and infertility.

Source:
Journal reference:

Popli, P., et al. (2023) Beclin-1-dependent autophagy, but not apoptosis, is critical for stem-cell-mediated endometrial programming and the establishment of pregnancy. Developmental Cell. doi.org/10.1016/j.devcel.2023.03.013.

Live attenuated nasal vaccine elicits superior immunity to SARS-CoV-2 variants in hamsters

Since the beginning of the COVID-19 pandemic, researchers have been working on mucosal vaccines that can be administered through the nose. Now, scientists in Berlin have developed a live attenuated vaccine for the nose. In “Nature Microbiology”, they describe the special immune protection it induces.

Coronaviruses spread primarily through the air. When infected people speak, cough, sneeze or laugh, they expel droplets of saliva containing the virus. Other people then breathe in these airborne pathogens and become infected themselves. A research team in Berlin decided to try to fight the virus that causes COVID-19 where it first takes hold: the mucous membranes of the nose, mouth, throat, and lungs. To do so, the scientists developed a live attenuated SARS-CoV-2 vaccine that is administered through the nose. In the latest issue of the journal “Nature Microbiology“, the interdisciplinary team describes how this live attenuated vaccine confers better immunity than vaccines injected into muscle.

Already in the fall of last year, two nasal vaccination formulations were approved for use in India and China. These contain modified adenoviruses – which typically cause respiratory or gastrointestinal illnesses – that are self-attenuating, meaning they either replicate poorly or stop replicating altogether, and therefore never trigger disease. Other live nasal vaccines are currently undergoing development and testing around the world.

Protection at the site of infection

The benefits of a nasal vaccine go far beyond just providing an alternative for people afraid of needles. When a vaccine is injected, it infers immunity primarily in the blood and throughout the entire body. However, this means that the immune system only detects and combats coronaviruses relatively late on in an infection, as they enter the body via the mucous membranes of the upper respiratory tract. “It is here, therefore, that we need local immunity if we want to intercept a respiratory virus early on,” explains the study’s co-last author Dr. Jakob Trimpert, a veterinarian and research group leader at the Institute of Virology at Freie Universität Berlin.

“Nasal vaccines are far more effective in this regard than injected vaccines, which fail or struggle to reach the mucous membranes,” emphasizes Dr. Emanuel Wyler, another co-last author. He has been researching COVID-19 since the start of the pandemic as part of the RNA Biology and Posttranscriptional Regulation Lab, which is led by Professor Markus Landthaler at the Berlin Institute for Medical Systems Biology of the Max Delbrück Center (MDC-BIMSB).

In an ideal scenario, a live intranasal vaccine stimulates the formation of the antibody immunoglobulin A (IgA) directly on site, thus preventing infection from occurring in the first place. IgA is the most common immunoglobin in the mucous membranes of the airways. It is able to neutralize pathogens by binding to them and preventing them from infecting respiratory tract cells. At the same time, the vaccine stimulates systemic immune responses that help provide effective overall protection from infection.

Memory T cells that reside in lung tissue play a similarly useful role to antibodies in the mucosa. These white blood cells remain in affected tissue long after an infection has passed and remember pathogens they have encountered before. Thanks to their location in the lungs, they can respond quickly to viruses that enter through the airways.” The co-first author draws attention to one of the observations the team made during their study: “We were able to show that prior intranasal vaccination results in the increased reactivation of these local memory cells in the event of a subsequent SARS-CoV-2 infection. Needless to say, we were particularly pleased with this result.”

Dr. Geraldine Nouailles, immunologist and research group leader at the Department of Pneumology, Respiratory Medicine, and Intensive Care Medicine at Charité

Local immunity impedes viral infection

The scientists tested the efficacy of the newly developed intranasal COVID-19 vaccine on hamster models that had been established by Trimpert and his team at Freie Universität Berlin at the beginning of the pandemic. These rodents are currently the most important non-transgenic model organisms for research into the novel coronavirus, as they can be infected with the same virus variants as humans and develop similar symptoms. They found that after two doses of the vaccine, the virus could no longer replicate in the model organism. “We witnessed strong activation of the immunological memory, and the mucous membranes were very well protected by the high concentration of antibodies,” Trimpert explains. The vaccine could therefore also significantly reduce the transmissibility of the virus.

In addition, the scientists compared the efficacy of the live attenuated vaccine with that of vaccines injected into the muscle. To do so, they vaccinated the hamsters either twice with the live vaccine, once with the mRNA and once with the live vaccine, or twice with an mRNA or adenovirus-based vaccine. Then, after the hamsters were infected with SARS-CoV-2, they used tissue samples from the nasal mucosa and lungs to see how strongly the virus was still able to attack the mucosal cells. They also determined the extent of the inflammatory response using single-cell sequencing. “The live attenuated vaccine performed better than the other vaccines in all parameters,” Wyler summarizes. This is probably due to the fact that the nasally administered vaccine builds up immunity directly at the viral entry site. In addition, the live vaccine contains all components of the virus – not just the spike protein, as is the case with the mRNA vaccines. While spike is indeed the virus’s most important antigen, the immune system can also recognize the virus from about 20 other proteins.

Better than conventional vaccines

The best protection against the SARS-CoV-2 was provided by double nasal vaccination, followed by the combination of a muscular injection of the mRNA vaccine and the subsequent nasal administration of the live attenuated vaccine. “This means the live vaccine could be particularly interesting as a booster,” says the study’s co-first author Julia Adler, a veterinarian and doctoral student at the Institute of Virology at Freie Universität Berlin.

The principle of live attenuated vaccines is old and is already used in measles and rubella vaccinations, for example. But in the past, scientists generated the attenuation by chance – sometimes waiting years for mutations to evolve that produced an attenuated virus. The Berlin researchers, on the other hand, were able to specifically alter the genetic code of the coronaviruses. “We wanted to prevent the attenuated viruses from mutating back into a more aggressive variant,” explains Dr. Dusan Kunec, a scientist at the Institute of Virology at Freie Universität Berlin and another co-last author of the study. “This makes our live vaccine entirely safe and means it can be tailored to new virus variants,” stresses Kunec, who was instrumental in developing the vaccine.

The next step is safety testing: The researchers are collaborating with RocketVax AG, a Swiss start-up based in Basel. The biotech company is developing the live attenuated SARS-CoV-2 vaccine and preparing a phase 1 clinical trial in humans. “We are thrilled to be at the forefront of developing and manufacturing the live attenuated SARS-CoV-2 vaccine as a nasal spray at RocketVax. Our goal is to rapidly scale-up production and advance clinical development towards market access to provide protection against post-COVID symptoms for all. We see great potential in the market for seasonal nasal vaccines”, says Dr. Vladimir Cmiljanovic, CEO of RocketVax.

The future will show which nasal vaccine will ultimately provide better protection. The manufacturers of the nasal adenovirus vaccines developed in India and China have not yet applied for approval in Europe. But one thing is clear to the scientists: since they are administered as nasal sprays or drops, nasal vaccines are a good option for use in places with limited access to trained medical staff. They are also inexpensive to produce and easy to store and transport. Last but not least, live attenuated vaccines such as this one have been proven to provide cross-protection against related viral strains, and thus presumably also against future SARS-CoV-2 variants.

Source:
Journal reference:

Nouailles, G., et al. (2023). Live-attenuated vaccine sCPD9 elicits superior mucosal and systemic immunity to SARS-CoV-2 variants in hamsters. Nature Microbiology. doi.org/10.1038/s41564-023-01352-8

Updated booster shots vital for keeping COVID-19 in check

Between natural infection and a global vaccination campaign, most people now have some immunity against the virus that causes COVID-19. This widespread immunity hasn’t stopped people from getting infected, but it has dampened the massive waves of illness and death that roiled the globe in the early years of the pandemic. Keeping the virus in check requires maintaining this level of immunity, a difficult task because the virus is constantly spinning off new variants that can partially evade antibodies elicited by vaccines and prior infections.

New research from scientists at Washington University School of Medicine in St. Louis suggests that updated booster shots will be important for shoring up population immunity as new variants emerge – but there’s a caveat.

Their research, published April 3 in Nature, shows that vaccinating people against the original strain of the virus and then boosting with a shot that targets a new variant can elicit a broad antibody response capable of neutralizing a wide array of variants, including ones that have not yet emerged. The trick is to target a variant for the booster that is so different from the original strain of the virus that it triggers the maturation of new and diverse antibody-producing cells.

The challenge with COVID-19 is that the virus keeps mutating. It’s not that the vaccines don’t elicit a lasting antibody response. They do. The problem is that the virus changes and the existing antibodies become irrelevant. Here we showed that it’s possible to design a variant-specific booster that doesn’t just strengthen the antibodies people already have but elicits new antibodies. This means that periodically giving boosters targeting new variants would allow population-level protection to be maintained even as the virus evolves.”

Ali Ellebedy, PhD, senior author, associate professor of pathology & immunology, of medicine, and of molecular microbiology

The first COVID-19 vaccines reduced the risk of severe illness and death by more than 90%. But then the virus changed. The antibodies that had worked so well against the original strain proved less effective at recognizing and neutralizing emerging variants, leading to breakthrough infections. The obvious solution was to update the vaccines to target new variants, but the success of the first vaccines against the original strain made designing an effective variant booster shot tricky, Ellebedy said.

“The whole point of making boosters against new variants is to teach the immune system to recognize features in the new variants that are different from the original strain,” Ellebedy said. “But the new variants still share a lot of features with the original strain, and it’s possible that the response to these shared features could dominate the response to new features. The boosters could end up just engaging immune memory cells that are already present rather than creating new memory cells, which is what we need for protection against new variants.”

To gauge the effectiveness of boosters at eliciting new antibodies, Ellebedy and colleagues studied people who received a COVID-19 vaccine targeted against the original strain, followed by a combined booster targeting two of the early variants -; beta and delta -; or a booster targeting the newer omicron variant. Along with Ellebedy, the research team included co-corresponding author Jackson Turner, PhD, an instructor in pathology & immunology, and co-first authors Wafaa B. Alsoussi, a graduate student, and Sameer Kumar Malladi, PhD, a postdoctoral researcher, both in Ellebedy’s lab.

The first studies were discouraging, Ellebedy noted. The researchers looked at 39 people who had received the two-shot primary sequence of the Pfizer/BioNTech or Moderna COVID-19 vaccines, followed by an experimental booster shot targeting the beta and delta variants. All participants produced antibodies that neutralized the original virus strain and the beta and delta variants. But none of the antibodies studied were unique to beta or delta. The absence of such antibodies indicates that the variant booster had failed to trigger the development of detectable new antibody-producing cells, Ellebedy said.

“This was disappointing but not surprising,” said Ellebedy, who is also an expert on influenza vaccines. “If you look at the sequences for the beta and delta spike proteins, they are not really very different from the original strain. If we saw this degree of difference among influenza strains, we would say there’s no reason to update the annual vaccine. But the omicron variant is a different matter.”

The omicron variant, dominant worldwide since late 2021, carries dozens of new mutations relative to the original strain of the virus. Ellebedy and colleagues recruited eight people who had received the Pfizer/BioNTech or Moderna COVID-19 vaccine and gave them a booster targeted against the omicron variant alone. The CDC later recommended the use of updated boosters that target both the omicron variant and the original strain. Such bivalent boosters became available to the public in fall 2022, manufactured by both Pfizer/BioNTech and Moderna.

Studying blood samples provided by participants four months after their boosters, the researchers identified more than 300 distinct antibodies capable of neutralizing the original strain, or one or more of the variants. Of those, six neutralized omicron but not the original strain, an indication that the booster successfully triggered the creation of new antibodies optimized for omicron. One such new antibody even neutralized BA.5, a subvariant of omicron that is circulating widely now but had not yet emerged at the time the booster was made.

“This booster engaged naive B cells and created new memory cells, which means it expanded people’s immune repertoire and equipped them to respond to a greater diversity of variants,” Ellebedy said. “Designing boosters to maintain immunity to the evolving virus is not going to be easy. The extent of the difference between the old and the new variants is clearly important. But if we are careful about how we choose which variants to include in boosters, I think we can stay ahead of this virus.”

Source:
Journal reference:

Alsoussi, W. B., et al. (2023). SARS-CoV-2 Omicron boosting induces de novo B cell response in humans. Nature. doi.org/10.1038/s41586-023-06025-4.

Babies’ gut microbiome is not influenced by vaginal microbiome, new study suggests

New research suggests that exposure to the vaginal microbiome during birth may not influence babies’ gut microbiome as has long been assumed. A new study conducted by a team of Canadian scientists has revealed that the composition of the maternal vaginal microbiome has no significant influence on the microbiome composition found in infant stool during early life.

Mother and Baby

Image Credit: Prostock-studio/Shutterstock.com

Challenging the assumption that vaginal birth corresponds to better gut health for the baby

For many years, it has been strongly believed that vaginal birth, as opposed to birth by cesarean section, is beneficial to the baby’s health. This is because it has been assumed that in moving through the vaginal microbiome, the baby is exposed to microbiota that influences the development of its own gut microbiome.

This assumption has been backed up by recent studies that have suggested that the mode of delivery significantly influences the gut microbiomes of babies and that those born by cesarean section are missing key microbes. A new study published in the journal Frontiers in Cellular and Infection Microbiology, however, has revealed evidence that contradicts this long-standing assumption.

No relationship found between vaginal microbiome composition and babiesstool microbiome

The study was one of the biggest ever mother-infant cohort studies. It recruited over 600 Canadian women expecting to give birth either vaginally or via cesarean section. Researchers took vaginal swabs from the mothers prior to delivery to assess their vaginal microbiome. Stool samples were also taken from the babies within 72 hours of birth, at 10 days old, and finally at three months old.

Analysis of the samples revealed that the mother’s vaginal microbiome composition was not a predictor of the babies’ stool microbiome composition at any of the three time points.

“It does not appear that exposure to maternal vaginal microbiota at the time of vaginal birth establishes the infant stool microbiome”,

Dr. Deborah Money, Professor of Obstetrics, University of British Colombia

Scott Dos Santos, a PhD candidate at the University of Saskatchewan responsible for the study’s lab work and data analysis, said, “from this study and other follow-up work, we were able to show that transfer of vaginal bacteria to the infant’s gut is limited”. It is theorized that other sources, such as the environment and breast milk, may play a more important role in establishing the baby’s gut microbiome. Further research is needed to understand these potential relationships further.

The role of antibiotics on the microbiome

The study did find that at 10 days and three months, there were statistically significant differences between the stool microbiome composition of babies born vaginally compared with those born by cesarean section. Money hypothesizes that this difference might be related to antibiotic use “the differences we found between infants’ stool microbiome composition by mode of delivery in early life seemed to be primarily influenced by exposure to antibiotics around the time of birth”. However, more research is needed to fully understand the impact of antibiotics on the development of babies’ gut microbiota.

More research is needed to understand the gut microbiome fully

Given the increasing importance attributed to the gut microbiome in the pathology of numerous diseases, it is vital that we understand the true relationship between the mode of birth and babies’ gut microbiome.

More research is needed to further understand the findings of this study. Researchers pointed out its limitations in that stool microbiome samples were not collected from the mothers. Future studies that analyze this type of information may provide a valuable perspective. In addition, further studies are needed to explore the impact of antibiotic use on the development of the gut microbiome of infants.

Sources:

Leaving lymph nodes intact until after immunotherapy could boost efficacy against solid tumors

Cancer treatment routinely involves taking out lymph nodes near the tumor in case they contain metastatic cancer cells. But new findings from a clinical trial by researchers at UC San Francisco and Gladstone Institutes shows that immunotherapy can activate tumor-fighting T cells in nearby lymph nodes.

The study, published March 16, 2023 in Cell, suggests that leaving lymph nodes intact until after immunotherapy could boost efficacy against solid tumors, only a small fraction of which currently respond to these newer types of treatments.

Most immunotherapies are aimed only at reinvigorating T cells in the tumor, where they often become exhausted battling the tumor’s cancer cells. But the new research shows that allowing the treatment to activate the immune response of the lymph nodes as well can play an important role in driving positive response to immunotherapy.

This work really changes our thinking about the importance of keeping lymph nodes in the body during treatment.”

Matt Spitzer, PhD, investigator for the Parker Institute for Cancer Immunotherapy and Gladstone-UCSF Institute of Genomic Immunology and senior author of the study

Lymph nodes are often removed because they are typically the first place metastatic cancer cells appear, and without surgery, it can be difficult to determine whether the nodes contain metastases.

“Immunotherapy is designed to jump start the immune response, but when we take out nearby lymph nodes before treatment, we’re essentially removing the key locations where T cells live and can be activated,” Spitzer said, noting that the evidence supporting the removal of lymph nodes is from older studies that predate the use of today’s immunotherapies.

Aim for the lymph nodes, not the tumor

Researchers have largely been working under the assumption that cancer immunotherapy works by stimulating the immune cells within the tumor, Spitzer said. But in a 2017 study in mice, Spitzer showed that immunotherapy drugs are actually activating the lymph nodes.

“That study changed our understanding of how these therapies might be working,” said Spitzer. Rather than the immunotherapy pumping up the T cells in the tumor, he said, T cells in the lymph nodes are likely the source for T cells circulating in the blood. Such circulating cells can then go into the tumor and kill off the cancer cells.

Having shown that intact lymph nodes can temper cancer’s hold in mice, Spitzer’s team wanted to know whether the same would prove true in human patients. They chose to design a trial for patients with head and neck cancers because of the high number of lymph nodes in those areas.

The trial enrolled 12 patients whose tumors hadn’t yet metastasized past the lymph nodes. Typically, such patients would undergo surgery to remove the tumor, followed by other treatments if recommended.

Instead, patients received a single cycle of an immunotherapy drug called atezolizumab (anti-PD-L1) that is produced by Genentech, a sponsor of the trial. A week or two later, Spitzer’s team measured how much the treatment activated the patients’ immune systems.

The treatment also included surgically removing each patient’s tumor and nearby lymph nodes after immunotherapy and analyzing how the immunotherapy affected them.

The team found that, after immunotherapy, the cancer-killing T cells in the lymph nodes began springing into action. They also found higher numbers of related immune cells in the patients’ blood.

Spitzer attributes some of the trial’s success to its design, which allowed the team to get a lot of information from a small number of patients by looking at the tissue before and after surgery and running detailed analyses.

“Being able to collect the tissue from surgery shortly after the patients had been given the drug was a really unique opportunity,” he said. “We were able to see, at the cellular level, what the drug was doing to the immune response.”

That kind of insight would be challenging to get from a more traditional trial in patients with later-stage disease, who would not typically benefit from undergoing surgery after immunotherapy.

Metastases inhibit immune response

Another benefit of the study design was that it allowed researchers to compare how the treatment affected lymph nodes with and without metastases, or a second cancer growth.

“No one had looked at metastatic lymph nodes in this way before,” said Spitzer. “We could see that the metastases impaired the immune response relative to what we saw in the healthy lymph nodes.”

It could be that the T cells in these metastatic nodes were less activated by the therapy, Spitzer said. If so, that could explain, in part, the poor performance of some immunotherapy treatments.

Still, the therapy prompted enough T-cell activity in the metastatic lymph nodes to consider leaving them in for a short period of time until treatment ends. “Removing lymph nodes with metastatic cancer cells is probably still important but taking them out before immunotherapy treatment may be throwing the baby out with the bathwater,” said Spitzer.

A subsequent goal of the current trial is to determine whether giving immunotherapy before surgery protects against the recurrence of tumors in the future. Researchers won’t know the answer to that until they’ve had a chance to monitor the participants for several years.

“My hope is that if we can activate a good immune response before the tumor is taken out, all those T cells will stay in the body and recognize cancer cells if they come back,” Spitzer said.

Next, the team plans to study better treatments for patients with metastatic lymph nodes, using drugs that would be more effective at reactivating their immune responses.

Source:
Journal reference:

Rahim, M. K., et al. (2023). Dynamic CD8+ T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes. Cell. doi.org/10.1016/j.cell.2023.02.021

Avanced genome editing technology could be used as a one-time treatment for CD3 delta SCID

A new UCLA-led study suggests that advanced genome editing technology could be used as a one-time treatment for the rare and deadly genetic disease CD3 delta severe combined immunodeficiency.

The condition, also known as CD3 delta SCID, is caused by a mutation in the CD3D gene, which prevents the production of the CD3 delta protein that is needed for the normal development of T cells from blood stem cells.

Without T cells, babies born with CD3 delta SCID are unable to fight off infections and, if untreated, often die within the first two years of life. Currently, bone marrow transplant is the only available treatment, but the procedure carries significant risks.

In a study published in Cell, the researchers showed that a new genome editing technique called base editing can correct the mutation that causes CD3 delta SCID in blood stem cells and restore their ability to produce T cells.

The potential therapy is the result of a collaboration between the laboratories of Dr. Donald Kohn and Dr. Gay Crooks, both members of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA and senior authors of the study.

Kohn’s lab has previously developed successful gene therapies for several immune system deficiencies, including other forms of SCID. He and his colleagues turned their attention to CD3 delta SCID at the request of Dr. Nicola Wright, a pediatric hematologist and immunologist at the Alberta Children’s Hospital Research Institute in Canada, who reached out in search of a better treatment option for her patients.

CD3 delta SCID is prevalent in the Mennonite community that migrates between Canada and Mexico.

Because newborns are not screened for SCID in Mexico, I often see babies who have been diagnosed late and are returning to Canada quite sick.”

Dr. Nicola Wright, pediatric hematologist and immunologist at the Alberta Children’s Hospital Research Institute

When Kohn presented Wright’s request to his lab, Grace McAuley, then a research associate who joined the lab at the end of her senior year at UCLA, stepped up with a daring idea.

“Grace proposed we try base editing, a very new technology my lab had never attempted before,” said Kohn, a distinguished professor of microbiology, immunology and molecular genetics, and of pediatrics.

Base editing is an ultraprecise form of genome editing that enables scientists to correct single-letter mutations in DNA. DNA is made up of four chemical bases that are referred to as A, T, C and G; those bases pair together to form the “rungs” in DNA’s double-helix ladder structure.

While other gene editing platforms, like CRISPR-Cas9, cut both strands of the chromosome to make changes to DNA, base editing chemically changes one DNA base letter into another -; an A to a G, for example -; leaving the chromosome intact.

“I had a very steep learning curve in the beginning, when base editing just wasn’t working,” said McAuley, who is now pursuing an M.D.-Ph.D. at UC San Diego and is the study’s co-first author. “But I kept pushing forward. My goal was help get this therapy to the clinic as fast as was safely possible.”

McAuley reached out to the Broad Institute’s David Liu, the inventor of base editing, for advice on how to evaluate the technique’s safety for this particular use. Eventually, McAuley identified a base editor that was highly efficient at correcting the disease-causing genetic mutation.

Because the disease is extremely rare, obtaining patient stem cells for the UCLA study was a significant challenge. The project got a boost when Wright provided the researchers with blood stem cells donated by a CD3 delta SCID patient who was undergoing a bone marrow transplant.

The base editor corrected an average of almost 71% of the patient’s stem cells across three laboratory experiments.

Next, McAuley worked with Dr. Gloria Yiu, a UCLA clinical instructor in rheumatology, to test whether the corrected cells could give rise to T cells. Yiu used artificial thymic organoids, which are stem cell-derived tissue models developed by Crooks’ lab that mimic the environment of the human thymus -; the organ where blood stem cells become T cells.

When the corrected blood stem cells were introduced into the artificial thymic organoids, they produced fully functional and mature T cells.

“Because the artificial thymic organoid supports the development of mature T cells so efficiently, it was the ideal system to show that base editing of patients’ stem cells could fix the defect seen in this disease,” said Yiu, who is also a co-first author of the study.

As a final step, McAuley studied the longevity of the corrected stem cells by transplanting them into a mouse. The corrected cells remained four months after transplant, indicating that base editing had corrected the mutation in true, self-renewing blood stem cells. The findings suggest that corrected blood stem cells could persist long-term and produce the T cells patients would need to live healthy lives.

“This project was a beautiful picture of team science, with clinical need and scientific expertise aligned,” said Crooks, a professor of pathology and laboratory medicine. “Every team member played a vital role in making this work successful.”

The research team is now working with Wright on how to bring the new approach to a clinical trial for infants with CD3 delta SCID from Canada, Mexico and the U.S.

This research was funded by the Jeffrey Modell Foundation, the National Institutes of Health, the Bill and Melinda Gates Foundation, the Howard Hughes Medical Institute, the V Foundation and the A.P. Giannini Foundation.

The therapeutic approach described in this article has been used in preclinical tests only and has not been tested in humans or approved by the Food and Drug Administration as safe and effective for use in humans. The technique is covered by a patent application filed by the UCLA Technology Development Group on behalf of the Regents of the University of California, with Kohn and McAuley listed as co-inventors.

Source:
Journal reference:

McAuley, G.E., et al. (2023) Human T cell generation is restored in CD3δ severe combined immunodeficiency through adenine base editing. Cell. doi.org/10.1016/j.cell.2023.02.027.

Multiplex PCR panels associated with reduced administration of antibiotics to hospitalized GI patients

Acute gastroenteritis afflicts adults of all ages, causing significant suffering and inflicting significant costs on the American healthcare system. A new study encompassing nearly 40,000 hospital visits from a geographically diverse healthcare database shows that sampling a single stool, using multiple polymerase chain reaction (PCR) panels, can identify more pathogens, notably diarrhea-causing E. coli and enteric viruses, and do so more rapidly than a conventional workup. The research is published in Journal of Clinical Microbiology, a publication of the American Society for Microbiology.

Using multiple PCR panels, “Fewer patients received antibiotics, required additional visits or diagnostic tests, or were hospitalized for gastroenteritis within 30 days [of index visit],” said Rena C. Moon, M.D., M.P.H., Principal Research Scientist, PINC AI Applied Sciences, Charlotte, NC. Additionally, healthcare costs were lower than with a conventional workup. Conventional workups may include testing a stool culture for a single suspect species of pathogen, use of a single pathogen PCR test, or identifying a pathogen using microscopy, immunology or an ova and parasites test.

Earlier studies showed that large multiplex PCR panels improve the speed and accuracy of diagnostic testing in patients with acute gastroenteritis, but their impact on costs and clinical outcomes had been uncertain. Our study shows that the benefits of multiplex panels can be achieved without increasing overall healthcare costs, and also facilitates more appropriate use of antibiotics.”

Ferric C. Fang, M.D., Professor of Laboratory Medicine, Pathology, and Microbiology at the University of Washington School of Medicine, Seattle

“This study illustrates the power of big data to analyze the healthcare impacts of diagnostic testing, and help laboratories select testing approaches that improve meaningful clinical outcomes,” Fang said.

Using multiplex PCR, more patients could be discharged and did not require hospitalization during the following month. That resulted in similar healthcare costs to patients undergoing the traditional stool work-up plus follow-up visits over the following month. Furthermore, multiplex PCR (using 12 or more) panels were associated with reduced administration of antibiotics to hospitalized patients.

The overall result: improved care with lower costs.

New discoveries made regarding autism onset in mouse models

Although autism is a common neurodevelopmental disorder, the multiple factors behind its onset are still not fully understood. Animal models of idiopathic autism, especially mice, are often used to help researchers understand the complicated mechanisms behind the disorder, with BTBR/J being the most commonly used mouse model in the world.

Now, an international research collaboration including Kobe University’s Professor TAKUMI Toru and Researcher Chia-wen Lin et al. have made new discoveries regarding autism onset in mouse models.

In their detailed series of experiments and analyses of BTBR/J mice and the other subspecies BTBR/R, they revealed that endogenous retrovirus activation increases a fetus’s susceptibility to autism. They also discovered that BTBR/R exhibits autistic-like behaviors without reduced learning ability, making it a more accurate model of autism than the widely-used BTBR/J model.

It is hoped that further research will contribute towards better classification of autism types, as well as the creation of new treatment strategies for neurodevelopmental disorders.

These research results were published in Molecular Psychiatry on March 7, 2023

Main points

  • The researchers analyzed BTBR/J, a widely used mouse model of autism, and its subspecies BTBR/Rusing MRI. This revealed that the corpus callosum, which connects the left and right hemispheres of the brain, was impaired in BTBR/J mice but not in BTBR/R mice.
  • Genome and transcription analysis showed that BTBR mice have increased levels of endogenous retrovirus genes.
  • Furthermore, single-cell RNA analysis of BTBR/R mice revealed changes in the expression of various genes (including stress response genes) that are indicative of endogenous retrovirus activation.
  • Even though BTBR/J and BTBR/R mice have the same ancestry, the results of various behavioral analysis experiments revealed differences in spatial learning ability and other behaviors between the two types of model mice.

Research background

Autism (autism spectrum disorder) is a neurodevelopmental disorder that remains largely unexplored despite the rapidly increasing number of patients. Reasons for this continuing increase in people diagnosed with autism include changes to diagnostic criteria and older fathers becoming more common. Autism is strongly related to genetic factors and can be caused by abnormalities in DNA structure, such as copy number variations. Animal models, especially mice, are often used in research to illuminate the pathology of autism. Among these models, BTBR/J is a mouse model of the natural onset of autism that is commonly used. Studies have reported various abnormalities in BTBR/J mice including impairment of the corpus callosum (which connects the left and right hemispheres of the brain) and excessive immune system signaling. However, it is not fully understood why this particular lineage displays autistic-like behavioral abnormalities.

The aim of the current study was to shed light on the onset mechanism of these autistic-like behavioral abnormalities by conducting comparative analysis on BTBR/J and its subspecies BTBR/R.

Research findings

First of all, the researchers conducted MRI scans on BTBR/J and BTBR/R mice to investigate structural differences in each region of the brain. The results revealed that there were differences between BTBR/J and BTBR/R mice in 33 regions including the amygdala. A particularly prominent difference discovered was that even though BTBR/J’s corpus callosum is impaired, BTBR/R’s is normal.

Next, the research group used the array CGH method to compare BTBR/R’s copy number variations with that of a normal mouse model (B6). They revealed that BTBR/R mice had significantly increased levels of endogenous retroviruses (ERV) in comparison to B6 mice. Furthermore, qRT-PCR tests revealed that these retroviruses were activated in BTBR/R mice. On the other hand, in B6 mice there was no change in the expression of LINE ERV (which is classified in the same repetitive sequence), indicating that this retroviral activation is specific to BTBR.

Subsequently, the researchers carried out single-cell RNA analysis on the tissue of embryonic BTBR mice (on the AGM and yolk sac). The results provide evidence of ERV activation in BTBR mice, as expression changes were observed in a group of genes downstream of ERV.

Lastly, the researchers comprehensively investigated the differences between BTBR/J and BTBR/R on a behavioral level. BTBR/R mice were less anxious than BTBR/J and showed qualitative changes in ultrasound vocalizations, which are measured as a way to assess communicative ability in mice. BTBR/R mice also exhibited more self-grooming behaviors and buried more marbles in the marble burying test. These two tests were designed to detect repetitive behavioral abnormalities in autistic individuals. From the results, it was clear that BTBR/R exhibits more repetitive behaviors (i.e. it is more symptomatic) than BTBR/J. The 3-chamber social interaction test, which measures how closely a mouse will approach another mouse, also revealed more pronounced social deficits in BTBR/R than BTBR/J mice (Figure 4i). In addition, a Barnes maze was used to conduct a spatial learning test, in which BTBR/J mice exhibited reduced learning ability compared to B6 (normal mice). BTBR/R mice, on the other hand, exhibited similar ability to B6.

Overall, the study revealed that retrovirus activation causes the copy number variants in BTBR mice to increase, which leads to the differences in behavior and brain structure seen in BTBR/J and BTBR/R mice (Figure 5).

Further developments

BTBR/J mice are widely used by researchers as a mouse model of autism. However, the results of this study highlight the usefulness of the other lineage of BTBR/R mice because they exhibit autistic-like behavior without compromised spatial learning ability. The results also suggest that it may be possible to develop new treatments for autism that suppress ERV activation. Furthermore, it is necessary to classify autism subtypes according to their onset mechanism, which is a vital first step towards opening up new avenues of treatment for autism.

Source:
Journal reference:

Lin, C-W., et al. (2023) An old model with new insights: endogenous retroviruses drive the evolvement toward ASD susceptibility and hijack transcription machinery during development. Molecular Psychiatry. doi.org/10.1038/s41380-023-01999-z.

Rheumatoid arthritis (RA)  is a complex, chronic inflammatory disease that is thought to affect about one percent of …

Rheumatoid arthritis (RA)  is a complex, chronic inflammatory disease that is thought to affect about one percent of the world’s population. RA happens when a person’s own antibodies attack joint tissue, causing painful swelling, stiffness, and redness. Some research has suggested that there is a link between RA and gum disease.

Image credit: Pixabay

Gum disease is estimated to affect up to 47 percent of adults, and in the disorder, oral microbes can move to the blood after the gums start to bleed. An increase in disease activity has been observed in RA patients who also have gum disease. Gum disease has been shown to be more common in RA patients who carry a certain type of antibodies, called anti-citrullinated protein antibodies (ACPAs), though ACPAs are often found in the blood of individuals with RA. The presence of ACPAs can often predate the diagnosis of RA by a few years.

A new study investigated the connections between these observations. In this work, the researchers collected blood samples from a small group of ten people with RA, five with and five without gum disease. These samples were collected every week for one year, and the investigators assessed the expression of both human and bacterial genes in those samples.

Certain types of inflammatory immune cells carried gene expression signatures that were associated with the autoimmune flares of arthritis patients who also had periodontal disease, as well as the presence of certain oral bacteria in the blood.

Many of these oral bacteria were chemically altered by deimination; they were citrullinated. Citrullination can change the structure and function of proteins. Although citrullination can be a part of the normal function of tissues, high levels of citrullination have been linked to inflammation.

Citrullination can also create targets for ACPAs; when the normal, unconverted forms of the oral bacteria were incubated with ACPAs, the antibodies did not react, but when the citrullinated oral bacteria were exposed to ACPAs, there was a reaction. ACPAs appear to be bound to oral microbes in RA patients.

The findings have been reported in Science Translational Medicine.

The study noted that the immune response to oral microbes could be influencing RA flares, that oral microbes can trigger a specific antibody reaction in patients with both RA and gum disease, and that RA flares cause varying immune signatures, which could reflect different flare triggers.

It could be that gum disease repeatedly causes the immune system to respond, and as the immune system keeps reacting and repeatedly increasing inflammation, RA may eventually begin to emerge. More work will be needed, however, to fully understand whether gum disease is playing a causative role in the development of RA.

Source: Science Translational Medicine


Carmen Leitch