Tag Archives: pH

Antiviral drugs may be a new treatment strategy in the fight against Candida auris

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

Antiviral drugs can make antifungals work again.

That, at its simplest, is the approach Mohamed Seleem’s lab at the Center for One Health Research has found may be a key treatment strategy in the battle against Candida auris, a frighteningly deadly fungal pathogen discovered in 2009 that is considered an urgent threat by the Centers for Disease Control and Prevention (CDC).

Candida auris, first discovered in Japan as an ear infection, has a staggering 60 percent mortality rate among those it infects, primarily people with compromised health in hospitals and nursing homes.

Recently, Seleem and Ph.D. students Yehia Elgammal and Ehab A. Salama published a paper in the American Society for Microbiology’s Antimicrobial Agents and Chemotherapy journal detailing the potential use of atazanavir, an HIV protease inhibitor drug, as a new avenue to improving the effectiveness of existing antifungals for those with a Candida auris infection.

A perfect storm of antimicrobial resistance, global warming and the COVID-19 pandemic has resulted in the rapid spread of Candida auris around the world, said Seleem, director of the center, a collaboration between the Virginia-Maryland College of Veterinary Medicine and the Edward Via College of Osteopathic Medicine.

We don’t have lots of drugs to use to treat fungal pathogens. We have only three classes of antifungal drugs. With a fungal pathogen, it’s often resistant to one class, but then we have two other options. What’s scary about Candida auris is it shows resistance to all three classes of the antifungal.

The CDC has a list of urgent threats, but on that list there is just one fungal pathogen, which is Candida auris. Because it’s urgent, we need to deal with it.”

Mohamed Seleem, the Tyler J. and Frances F. Young Chair in Bacteriology at Virginia Tech

Widespread use of fungicides in agriculture, in addition to the three classes of antifungal drugs used widely in medicine, has contributed to fungal pathogens developing more resistance, particularly Candida auris.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

Also, its rise has been linked to rising global temperatures and to easier spread through hospitals filled with COVID-19 patients in recent years during the global pandemic.

Atazanavir, an HIV protease inhibitor drug, has been found by Seleem’s lab to block the ability of Candida auris to excrete antifungals through its efflux pumps.

Think of a boat taking on water and hoses siphoning that water out of the boat to keep it afloat. Atazanavir stops up the hoses.

That allows the azole class of antifungal drugs to not be expelled as easily and perform better against Candida auris, the Seleem lab’s research has found.

The research on atazanavir builds on work three years ago by Seleem’s lab, then at Purdue University, finding potentially similar benefit in lopinavir, another HIV protease inhibitor.

HIV protease drugs are already in wide use among HIV patients, who can also be extra susceptible to Candida auris. Some HIV patients have likely been taking HIV protease drugs and azole-class antifungals in tandem for separate purposes, providing a potential source of already existing data that can be reviewed on whether those patients had Candida auris and what effects the emerging pathogen had on them.

Repurposing drugs already on the market for new uses can allow those treatments to reach widespread clinical use much more rapidly than would happen with the discovery of an entirely new drug, as existing drugs have already been tested and approved by the Food and Drug Administration and have years of further observation of effects in prescriptive use.

In 2022, the Center for One Health Research received a $1.9 million grant from the National Institutes of Health for the Seleem lab’s research on repurposing already approved drugs for treating gonorrhea.

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Source:

Honokiol inhibits replication of SARS-CoV-2 in several cell types

A compound called honokiol, which is found in the bark of multiple species of magnolia tree, inhibits replication of SARS-CoV-2 virus in several types of cells, according to a team of researchers in the Netherlands. The research is published in Microbiology Spectrum, a journal of the American Society for Microbiology.

The researchers found that Honokiol inhibits replication of SARS-CoV-2 in several cell types, causing production of infectious SARS-CoV-2 particles in treated cells to fall to around 1,000th of the previous level.

The compound also inhibited replication of other highly pathogenic human coronaviruses, including MERS- and SARS-CoV.

This suggests that it has a broad spectrum of activity and would likely also inhibit novel coronaviruses that might emerge in the future.”

Martijn J. van Hemert, Ph.D., Associate Professor, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands

The motivation for the research was the lack of vaccines and treatments early in the pandemic, and the desire to be prepared for the next new coronavirus. To this end, van Hemert emphasized that his group, as well as others from around the world, responded to COVID-19 by testing many compounds for antiviral effects.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

“If honokiol can be developed into a drug, possibly in combination with other compounds, stockpiling it would help us to increase our preparedness for the emergence of the next coronavirus,” said van Hemert. “Broad-spectrum drugs could then be used to treat early patients and prevent spread, or they could be used prophylactically among healthcare workers, and in high-risk groups, such as among nursing home residents.”

Honokiol also has anti-inflammatory properties, van Hemert noted. That, he said, could be helpful in cases where patients wait until a relatively late stage of the disease to obtain medical treatment-;a frequent occurrence-;by which time the body’s own inflammatory responses to the infection are causing symptoms. “At that point, inhibition of virus replication might no longer be helpful, but honokiol’s anti-inflammatory response might mitigate the illness,” van Hemert explained.

Honokiol inhibits a later step of the viral replication cycle-;one that takes place after the virus has entered the cell. The investigators suspect that honokiol does so by triggering processes in the host cell that impede replication of the virus. It did so in the case of the original SARS-CoV-2 variants, and also in that of the more recent omicron variants.

At this early stage in the research, “Our study merely provides the basis for further research into potential therapeutic applications,” said van Hemert. “It is important to mention that it is too early to claim that honokiol might be used in SARS-CoV-2 patients. This requires much more research and-;if successful-;properly conducted clinical trials.”

Van Hemert learned about honokiol from Jack Arbiser, M.D., Ph.D., of Emory School of Medicine, during the early stages of the pandemic. Arbiser had been researching honokiol’s anticancer properties, and he told van Hemert he thought that the effects of the compound on the host cell might be beneficial for treatment of COVID-19 patients as well.

Clarisse Salgado-Benvindo, a Ph.D. student in van Hemert’s group, performed most of the experiments, using cultured cells that the researchers infected with SARS-CoV-2, or the highly pathogenic coronaviruses SARS-CoV and MERS-CoV. Experimenters worked inside a BSL-3 lab, which is a special high containment lab, while wearing protective suits with full-face masks to prevent infection.

Source:
Journal reference:

Salgado-Benvindo, C., et al. (2023) Honokiol Inhibits SARS-CoV-2 Replication in Cell Culture at a Post-Entry Step. Microbiology Spectrum. doi.org/10.1128/spectrum.03273-22.

Novel computational platform can expand the pool of cancer immunotherapy targets

Researchers at Children’s Hospital of Philadelphia (CHOP) and the University of California, Los Angeles (UCLA) have developed a computational platform capable of discovering tumor antigens derived from alternative RNA splicing, expanding the pool of cancer immunotherapy targets. The tool, called “Isoform peptides from RNA splicing for Immunotherapy target Screening” (IRIS), was described in a paper published today in the Proceedings of the National Academy of Sciences.

Immunotherapy has revolutionized cancer treatment, but for many cancers including pediatric cancers, the repertoire of antigens is incomplete, underscoring a need to expand the inventory of actionable immunotherapy targets. We know that aberrant alternative RNA splicing is widespread in cancer and generates a range of potential immunotherapy targets. In our study, we were able to show that our computational platform was able to identify immunotherapy targets that arise from alternative splicing, introducing a broadly applicable framework for discovering novel cancer immunotherapy targets that arise from this process.”

Yi Xing, PhD, co-senior author, director of the Center for Computational and Genomic Medicine at CHOP

Cancer immunotherapy has ushered in a sea change in the treatment of many hematologic cancers, harnessing the power of a patient’s own immune system to fight the disease. Chimeric antigen receptor T-cell (CAR-T) and T cell receptor-engineered T cell (TCR-T) therapies modify a patient’s own T cells to attack known antigens on the surface of cancer cells and have often led to durable responses for cancers that were once considered incurable. However, the field has encountered challenges in the solid tumor space, in large part due to a lack of known and suitable targets for these cancers, highlighting the need for novel approaches to expand the pool of immunotherapy targets.

Alternative splicing is an essential process that allows for one gene to code for many gene products, based on where the RNA is cut and joined, or spliced, before being translated into proteins. However, the splicing process is dysregulated in cancer cells, which often take advantage of this process to produce proteins that promote growth and survival, allowing them to replicate uncontrollably and metastasize. This happens in many adult and pediatric cancers. Scientists have suggested splicing dysregulation could be a source of novel tumor antigens for immunotherapy, but identifying such antigens has been a challenge.

To address this difficulty, the researchers created IRIS to leverage large-scale tumor and normal RNA sequencing data and incorporate multiple screening approaches to discover tumor antigens that arise due to alternative splicing. Integrating RNA sequencing-based transcriptomics data and mass spectrometry-based proteomics data, the researchers showed that hundreds of IRIS-predicted TCR targets are presented by human leukocyte antigen (HLA) molecules, the part of the human immune system that presents antigens to T cells.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

The researchers then applied IRIS to RNA sequencing data from neuroendocrine prostate cancer (NEPC), a metastatic and highly lethal disease known to involve shifts in RNA splicing, as discovered in a prior study by CHOP and UCLA researchers. From 2,939 alternative splicing events enriched in NEPC, IRIS predicted 1,651 peptides as potential TCR targets. The researchers then applied a more stringent screening test, which prioritized 48 potential targets. Interestingly, the researchers found that these targets were highly enriched for peptides encoded by short sequences of less than 30 nucleotides in length – also known as “microexons” – which may arise from a unique program of splicing dysregulation in this type of cancer.

To validate the immunogenicity of these targets, the researchers isolated T cells reactive to IRIS-predicted targets, and then used single-cell sequencing to identify the TCR sequences. The researchers modified human peripheral blood mononuclear cells with seven TCRs and found they were highly reactive against targets predicted by IRIS to be good immunotherapy candidates. One TCR was particularly efficient at killing tumor cells expressing the target peptide of interest.

“Immunotherapy is a powerful tool that has had a significant impact on the treatment of some cancers, but the benefits have not been fully realized in many lethal cancers that could benefit from this approach,” said Owen N. Witte, MD, University Professor of Microbiology, Immunology, and Molecular Genetics and member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA. “The discovery of new antigenic targets that may be shared among different patients – and even different tumor types – could be instrumental in expanding the value of cell-based therapies. Analyzing massive amounts of data on tumor and normal tissues, which requires sophisticated computational tools like those developed by the Xing Lab, provides actionable insights on targets that one day could be tested in the clinic.”

“This proof-of-concept study demonstrates that alternatively spliced RNA transcripts are viable targets for cancer immunotherapy and provides a big data and multiomics-powered computational platform for finding these targets,” Dr. Xing added. “We are applying IRIS for target discovery across a wide range of pediatric and adult cancers. We are also developing a next-generation IRIS platform that harnesses newer transcriptomics technologies, such as long read and single cell analysis.”

This research was supported in part by the Immuno-Oncology Translational Network (IOTN) of the National Cancer Institute’s Cancer Moonshot Initiative, other National Institutes of Health funding, the Parker Institute for Cancer Immunotherapy, the Cancer Research Institute, and the Ressler Family Fund.

Source:
Journal reference:

Pan, Y., et al. (2023) IRIS: Discovery of cancer immunotherapy targets arising from pre-mRNA alternative splicing. PNAS. doi.org/10.1073/pnas.2221116120.

Extremophilic bacteria from high temperature marine environments can help reduce asbestos’ toxicity

Asbestos materials were once widely used in homes, buildings, automobile brakes and many other built materials due to their strength and resistance to heat and fire, as well as to their low electrical conductivity. Unfortunately, asbestos exposure through inhalation of small fiber particles has been shown to be highly carcinogenic.

Now, for the first time, researchers from the University of Pennsylvania have shown that extremophilic bacteria from high temperature marine environments can be used to reduce asbestos’ toxicity. The research is published in Applied and Environmental Microbiology, a journal of the American Society for Microbiology.

Much of their research has focused on use of the thermophilic bacterium Deferrisoma palaeochoriense to remove iron from asbestos minerals through anaerobic respiration of that iron. “Iron has been identified as a major component driving the toxicity of asbestos minerals and its removal from asbestos minerals has been shown to decrease their toxic properties,” said Ileana Pérez-Rodríguez, Ph.D., Assistant Professor of Earth and Environmental Science at the University of Pennsylvania.

D. palaeochoriense has also been shown to mediate transfer of electrical charge within the iron contained in asbestos, without changing its mineral structure. Doing so might enhance asbestos’ electrical conductivity, said Pérez-Rodríguez.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

Based on this observation, the bacterium could be used to treat asbestos’ toxicity through iron removal. Alternatively, the new properties of electrical conductivity could enable reuse of treated asbestos for that purpose.

As with iron, the fibrous silicate structures of asbestos are also carcinogenic. Removal of silicon and magnesium from asbestos has been shown to disrupt its fibrous structure. The investigators tested the ability of the thermophilic bacterium Thermovibrio ammonificans to remove these elements from asbestos minerals by accumulating silicon in its biomass in a process known as biosilicification.

T. ammonificans accumulated silicon in its biomass when in the presence of “serpentine” asbestos, which has curly fibers, but not while growing in the presence of “amphibole” asbestos, which has straight fibers, said Pérez-Rodríguez. This difference, along with the varying amounts and types of elements released during microbe-mineral interactions with different types of asbestos “highlights the difficulty of approaching asbestos treatments as a one-size-fits-all solution, given the unique chemical compositions and crystal structures associated with each asbestos mineral,” Pérez-Rodríguez said.

Overall, these experiments promoted the removal of iron, silicon and/or magnesium for the detoxification of asbestos in a superior manner as compared to other biologically mediated detoxification of asbestos, such as via fungi, said Pérez-Rodríguez. However, further analysis will be required to optimize asbestos treatments to determine the most practical methods for the detoxification and/or reuse of asbestos as secondary raw materials.

Source:
Journal reference:

Choi, J. K., et al. (2023) Microbe-Mineral Interactions between Asbestos and Thermophilic Chemolithoautotrophic Anaerobes. Geomicrobiology. doi.org/10.1128/aem.02048-22.

Study outlines protocols for safely shipping goods without starting SARS-CoV-2 outbreak

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

The virus that causes COVID-19 spreads through droplets and small particles, but contaminated surfaces of shipping materials may also contribute to outbreaks. Environmental persistence was thoroughly studied at first, but less research has been focused on how long newer, highly transmissible variants remain viable on surfaces.

This week in Microbiology Spectrum, an open-access journal of the American Society for Microbiology, a team of researchers in China reported their findings on how environmental factors affect the persistence of 2 different, highly transmissible Omicron variants on shipping materials. They found that viability depends on the type of surface, the temperature and the original viral concentration.

The study could provide guidance for safety practices in the shipping industry.

Our findings provide initial information to determine the likelihood of objects serving as sources of transmission. For instance, viruses may survive for extended periods at lower temperatures, making it essential to reinforce personal protection and disinfection procedures to control viral transmission during transportation.”

Bei Wang, Ph.D., Study Leader, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing

During the pandemic, as information emerged about routes of transmission and sources of outbreaks, researchers began to investigate whether materials used in transportation might pose a risk. “It was necessary to confirm the stability of viruses on those surfaces to improve a safe delivery process,” said Wang.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

Concern and new question arose as the virus mutated and infectious variants emerged. Many, like Omicron, are highly transmissible, in part because they can evade a person’s immune response. Omicron subvariants can even infect people who have been infected before by other variants. Previous studies of SARS-CoV-2 variants have also shown that not every variant remains viable for the same duration on shipping materials, suggesting a link between genetic mutations and viral stability. “We wanted to consider exploring the mechanisms of the stability of mutations under different environmental factors.”

In the new work, the researchers tested sterilized samples of 4 different materials to measure how long Omicron variants BA.1 and BA.5 would survive at different temperatures. The materials included paper cartons, polyethylene packing film, iron and nonwoven fabric, which is used in shipping for breathable bags, insulated pads for meat packaging trays, fruit liners and other containers. For seven days, 180 samples of each material, treated with viral titers for the two sub variants, were kept at 4 degrees Celsius (39 degrees Fahrenheit), 25 Celsius (77 Fahrenheit), or 37 degrees (99 Fahrenheit).

At the end of the week, the researchers found that temperature had the most impact on survival, and the virus was most stable, and thus was most likely to persist on the packing material, at the lowest temperature. At the highest temperature, only four BA.1 samples and five BA.5 samples still tested positive. In general, the BA.5 subvariant persisted on more samples and temperatures than the BA.1 subvariant, suggesting that BA.5 might be more environmentally stable. They also found that the persistence varied by material. On the paper carton, for example, neither subvariant survived for more than 1 day at any temperature. Nonwoven fabric inoculated with BA.5 were most likely to test positive at all temperatures.

The study outlines protocols for safely shipping goods without starting an outbreak. “The survival time is not as long as we expected at room temperature, so it is generally safe to transport materials at room temperature,” said Wang. In the future, he said, his group hopes to publish similar protocols. “We plan to extend this methodology to include additional organic materials and a range of temperatures.”

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Source:
Journal reference:

Wang, B., et al. (2023) The Environmental Stability of SARS-CoV-2 Variants Omicron BA.1 and BA.5 on the Surfaces of Widely Used Transport Packaging Materials. Microbiology Spectrum. doi.org/10.1128/spectrum.04881-22.

Discovery offers a potential target for TB therapies

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

In ongoing research aimed at developing more effective treatments for tuberculosis (TB), University of Massachusetts Amherst microbiologists have identified a long-sought gene that plays a critical role in the growth and survival of the TB pathogen.

The discovery offers a potential target for drug therapies for a deadly disease that has few effective treatments and in 2021 alone sickened 10.6 million worldwide and caused 1.6 million deaths, according to the World Health Organization.

Published in the journal mBio, the research showed that the putative gene cfa encodes an essential enzyme directly involved in the first step of forming tuberculostearic acid (TBSA), a unique fatty acid in the cell membranes of mycobacteria. TBSA was first isolated from mycobacteria nearly 100 years ago but exactly how it’s synthesized had remained elusive.

“There is a long history associated with this very fascinating fatty acid,” says senior author Yasu Morita, associate professor of microbiology, in whose lab lead authors Malavika Prithviraj and Takehiro Kado carried out the research.

The experiments revealed how TBSA controls the functions of the mycobacterial plasma membrane, which acts as a protective barrier for the TB pathogen to survive in human hosts for decades.

Cfa is directly involved in the formation of tuberculostearic acid and is also involved in the organization of the plasma membrane, and that all fell in place with our hypothesis.”

Malavika Prithviraj, Lead Author

The focus of research in Morita’s lab is to identify ways to interrupt homeostasis of the thick and waxy cell envelope, which includes the plasma membrane, so the mycobacteria are unable to grow or vulnerable to attack. Prithviraj, a Ph.D. student, and colleagues performed cellular lipidomics to confirm what researchers have suspected for some 60 years.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

“People have been very, very interested in understanding how this lipid is made and what it is doing in the cell,” Morita says. “Malavika figured out that Cfa is the enzyme that makes this lipid, which is such a unique lipid that researchers have been pursuing this lipid as a diagnostic marker for TB.”

In previous experiments, the Morita lab had noted that plasma membrane domains found at polar regions of the cell were important for the growth of the mycobacteria.

“We were interested in understanding how this particular membrane domain is compartmentalized and organized in the bacteria,” Prithviraj says. “We worked with a deletion strain of cfa and also a complement strain wherein we could add it back into the bacteria and check what exactly was its function.”

The TB pathogen usually stays alive but dormant in the body for years or decades, thanks to its protective surface structure. Morita and his team work on a nonpathogenic model organism primarily to figure out what features of bacteria are needed for them to survive and grow.

The researchers found that TBSA also prevents “tight packing” inside the membrane. “If the membrane is too rigid, it cannot function properly, and so the membrane dynamics, or maintaining membrane fluidity, is very important,” Morita says. “What we showed in this paper is that tuberculostearic acid is likely a very important molecular key for maintaining this proper fluidity.”

The findings will help researchers take the next step toward developing new TB treatments.

“We would be interested in understanding the effects of the gene in TB infection and how Cfa might be helping the bacteria to survive in the human host” Prithviraj says. “If we find a way to disrupt the membrane fluidity maintenance, the cells cannot grow efficiently and would eventually die.”

Morita adds, “There are many drugs used for treating TB, but there has been no previous demonstration that this particular aspect of mycobacteria physiology can be used as a direct target,” Morita says. “This study is showing it could be.”

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Source:
Journal reference:

Prithviraj, M., et al. (2023) Tuberculostearic Acid Controls Mycobacterial Membrane Compartmentalization. mBio. doi.org/10.1128/mbio.03396-22.

The importance and challenges of developing mucosal SARS-COV-2 vaccines

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

In November 2022, the National Institute of Allergy and Infectious Diseases (NIAID) co-hosted a virtual workshop on the importance and challenges of developing mucosal vaccines for SARS-COV-2. The highlights of this workshop have now been published as a report in npj Vaccines.

Although vaccines currently available for COVID-19 are usually effective at preventing severe disease, hospitalizations and death, researchers recognize the need for improvement. A vaccine more effective at preventing transmission or infection with SARS-CoV-2 could reduce overall replication of the virus and associated disease burden. Because SARS-CoV-2 enters the body and is transmitted via the respiratory tract, a vaccine to promote a mucosal immune response in the respiratory tract could be better at blocking transmission and infection. Although at least 44 mucosal vaccines are currently in preclinical development, and several more are in clinical development or authorized for use in other countries, no COVID-19 mucosal vaccines have been authorized for use by regulatory agencies in the United States or Europe.

NIAID partnered with the Coalition for Epidemic Preparedness Innovation, the Bill and Melinda Gates Foundation, the Biomedical Advanced Research and Development Authority, and the Wellcome Trust to develop the workshop. Over the course of the two-day event (November 7-8 2022), vaccine researchers and developers met virtually in eight sessions and discussed challenges and priorities in mucosal vaccine development.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

For instance, new correlates of protection must be identified and verified to evaluate whether a vaccine improves recipients’ mucosal immune responses to SARS-CoV-2, and to facilitate clinical testing and regulatory approval. Improved animal models are needed to help researchers develop potential mucosal vaccines, according to the report. Careful clinical design is needed to assess the unique safety concerns related to mucosal vaccines and to appropriately evaluate whether a vaccine can block transmission of the virus. Trial design also needs to account for how vaccines will be used. Since most people have either received a SARS-CoV-2 vaccine or had a natural infection, mucosal vaccines likely will be used as boosters, and researchers will need to know how well vaccines function in people who have some prior immunity. The means of delivery also must be considered: nasal sprays, pills, liquids taken by mouth, and even nebulizers could deliver a vaccine more directly to the respiratory system, but each of these poses unique challenges to manufacture, test and deliver.

Despite these and other challenges, attendees of the workshop were optimistic about the future of mucosal vaccines for COVID-19. Considering the potential benefits that a successful candidate could bring, they concluded that research needed to further mucosal vaccine development is a priority. Such research also could even lead to improved vaccines for other diseases, such as influenza, respiratory syncytial virus (RSV) or tuberculosis, in addition to advancing COVID-19 vaccinology.

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Source:
Journal reference:

Knisely, J. M., et al. (2023). Mucosal vaccines for SARS-CoV-2: scientific gaps and opportunities—workshop report. Npj Vaccines. doi.org/10.1038/s41541-023-00654-6

Genetically-engineered probiotic could be a new way to reduce alcohol-induced health problems

Excessive alcohol consumption leads to painful hangovers and accompanying headaches, fatigue, and nausea. Drinking alcohol has also been linked to a raft of health problems in the human body, including heart disease, cirrhosis, and immune deficiency. One way to avoid those consequences would be to drink less, but researchers in China have introduced another way to mitigate hangovers and other adverse outcomes -; a genetically-engineered probiotic.

In a paper published this week in Microbiology Spectrum, the researchers described their approach and reported that in experiments on mice, the treatment reduced alcohol absorption, prolonged alcohol tolerance, and shortened the animals’ recovery time after exposure to alcohol. The probiotic hasn’t yet been tested on humans, but the authors predicted that if it confers the same benefits, it could present a new way to reduce alcohol-induced health problems, and liver problems in general.

Meng Dong, Ph.D, at the Chinese Academy of Science’s Institute of Zoology, who worked on the study, noted that clinical applications may extend beyond alcohol-related conditions. “We believe that genetically engineered probiotics will provide new ideas for the treatment of liver diseases,” she said.

The human body primarily uses forms of an enzyme called alcohol dehydrogenase, or ADH, to metabolize alcohol. But some variants are more effective than others: Some studies have found that a form called ADH1B, found primarily in East Asian and Polynesian populations, is 100 times more active than other variants. Previous studies on mice have shown that viral vectors genetically engineered to express ADH1B can accelerate the breakdown of alcohol, but that approach hasn’t been shown to be safe in humans.

Motivated by those findings, Dong and her colleagues looked for a safer delivery method, focusing on the probiotic Lactococcus lactis, a bacterium often used in fermentation. They used molecular cloning to introduce the gene for human ADH1B into a bacterial plasmid, which was then introduced into a strain of L. lactis. Lab tests confirmed that the probiotic secreted the enzyme. The researchers encapsulated the probiotic to ensure it would survive against stomach acid, then tested it on 3 groups of 5 mice, each exposed to different levels of alcohol.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

Untreated mice showed signs of drunkenness 20 minutes after exposure to alcohol. When the mice were placed on their backs, for example, they were unable to get back on their feet. But in the group that received a probiotic that expressed human ADH1B, half the mice were still able to turn themselves over an hour after alcohol exposure. A quarter never lost their ability to turn themselves over.

Further tests showed that 2 hours after exposure, blood alcohol levels in the control group continued to rise, while those in the probiotic-treated mice had begun to fall. In addition, the researchers found that treated mice showed lower levels of lipids and triglycerides in their livers, suggesting that the probiotic could alleviate alcohol-related damage to that organ.

The next step, Dong said, is to investigate whether the potential therapeutic effect of the modified probiotic extends to humans.

We are excited about the improvement of recombinant probiotics in acute alcohol-induced liver and intestinal damage.”

Meng Dong, Ph.D, Chinese Academy of Science’s Institute of Zoology

Source:
Journal reference:

Jiang, X., et al. (2023) Oral Probiotic Expressing Human Ethanol Dehydrogenase Attenuates Damage Caused by Acute Alcohol Consumption in Mice. Microbiology Spectrum. doi.org/10.1128/spectrum.04294-22.

Study offers a novel therapeutic option to combat antibiotic-resistant pneumonia

Increases in multidrug-resistance in the bacteria Streptococcus pneumoniae have made it the fourth-leading cause of death associated with antibiotic resistance.

In a study in PLOS Biology, researchers report a new target to fight against pneumonia due to infections by this opportunistic lung pathogen -; interference with the bacteria’s fermentation metabolism. This may offer a novel therapeutic option in the urgent need to discover new strategies to combat drug-resistant S. pneumoniae.

In a proof of principle, University of Alabama at Birmingham researchers showed that giving an existing drug -; one already approved by the United States Food and Drug Administration to treat methanol poisoning – in combination with the antibiotic erythromycin significantly reduced disease in mice infected with a virulent, multidrug-resistant S. pneumoniae. The combination therapy reduced bacterial burden in the lungs by 95 percent, and bacterial burdens in the spleen and heart by 100- and 700-fold, respectively. The FDA-approved drug alone, or erythromycin alone, had no effect.

Fomepizole, the FDA-approved drug, disrupts activity of the enzyme alcohol dehydrogenase in the bacteria. The mice were infected intratracheally with the multidrug-resistant clinical isolate S. pneumoniae serotype 35B strain 162–5678, which has high resistance to erythromycin. Notably, the S. pneumoniae 35B serotype has been reported as an emerging multidrug-resistant serotype in clinical settings. Eighteen hours after infection, the mice were given a single injection of erythromycin, with or without fomepizole.

Fomepizole, or other drugs that inhibit bacterial metabolism, have potential to dramatically increase the efficacy of erythromycin and other antibiotics, respectively, in vivo.”

Carlos Orihuela, Ph.D., professor and interim chair of the UAB Department of Microbiology

A broad foundation of basic research preceded this proof-of-principle experiment.

S. pneumoniae relies on fermentation and glycolysis to produce energy. During fermentation, pyruvate is converted to lactate, acetate and ethanol, and NADH is oxidized to regenerate NAD+, which is needed for glycolysis. Accordingly, maintenance of an available NAD+ pool, necessary for redox balance, is vital for sustained energy production, bacterial growth and survival.

Orihuela and UAB colleagues made S. pneumoniae mutants in five enzymes involved in fermentation and NAD+ production, and they found, in general, that the mutants had impaired metabolism. Two of the mutants, one for lactate dehydrogenase and one for alcohol dehydrogenase, had stark decreases in intracellular pool of ATP, the energy molecule of living cells. The other three mutants had significant, but more modest, decreases.

NAD+/NADH redox imbalances in the mutants generally interfered with production of S. pneumoniae virulence factors and colonization in the mouse nasopharynx. Some of the mutations influenced susceptibility to antibiotics, as tested with three antibiotics, including erythromycin, that interfere with protein synthesis, two antibiotics that disrupt cell wall synthesis and one antibiotic that targets DNA transcription.

Researchers found that treating a wildtype S. pneumoniae, which did not have mutations in alcohol dehydrogenase or the other enzymes, with fomepizole alone caused redox imbalances. In vitro tests showed that treatment of S. pneumoniae with fomepizole enhanced the susceptibility to antibiotics, including fourfold decreases in the minimal inhibitory concentrations of the antibiotics erythromycin and gentamicin.

“We also evaluated whether fomepizole treatment impacted the antibiotic susceptibility of other anaerobic gram-positive bacteria, including other streptococcal pathogens, including Streptococcus pyogenes, Streptococcus agalactiae and Enterococcus faecium, to erythromycin or gentamicin,” Orihuela said. “We observed from twofold to eightfold decreased minimal inhibitory concentration with fomepizole in most cases, including E. faecium.”

“Our results indicate that the blocking of NAD+ regeneration pathways during infection is a way to increase antibiotic susceptibility in drug-resistant gram-positive anaerobic pathogens,” Orihuela said. “This has clinical potential with regard to microbial eradication and treatment of disseminated infection.”

Globally, more than 3 million individuals are hospitalized due to pneumococcal disease annually, and hundreds of thousands die as a result.

Source:
Journal reference:

Im, H., et al. (2023). Targeting NAD+ regeneration enhances antibiotic susceptibility of Streptococcus pneumoniae during invasive disease. PLOS Biology. doi.org/10.1371/journal.pbio.3002020.

Monocytes may be a stable reservoir of HIV in patients taking antiretroviral therapy

To develop treatments that may one day entirely rid the body of HIV infection, scientists have long sought to identify all of the places that the virus can hide its genetic code. Now, in a study using blood samples from men and women with HIV on long-term suppressive therapy, a team led by Johns Hopkins Medicine scientists reports new evidence that one such stable reservoir of HIV genomes can be found in circulating white blood cells called monocytes.

Monocytes are short-lived circulating immune cells that are a precursor to macrophages, immune cells able to engulf and destroy viruses, bacteria and other cells foreign to the host.

In the current research, published March 27 in Nature Microbiology, the scientists found evidence that blood samples from people with HIV undergoing long term, standard antiretroviral therapy contained monocytes that harbor stable HIV DNA capable of infecting neighboring cells.

The scientists say the findings may provide a new direction for efforts to improve therapies and eventually cure HIV, which affects more than 34 million people worldwide, according to the World Health Organization. Current antiretroviral drugs can successfully suppress HIV to nearly undetectable levels, but have not resulted in total eradication of the virus.

We don’t know how critical these monocytes and macrophages are to eradication of HIV, but our results suggest we should continue research efforts to understand their role in this disease.”

Janice Clements, Ph.D., professor of molecular and comparative pathobiology, Johns Hopkins University School of Medicine

Scientists have long known that HIV stashes its genome most often in a type of immune cell called a CD4+ T-cell. These hiding places are known as reservoirs.

“To eradicate HIV, the goal is to find biomarkers for cells that harbor the HIV genome and eliminate those cells,” says Rebecca Veenhuis, Ph.D., assistant professor of molecular and comparative pathobiology at the Johns Hopkins University School of Medicine.

To further study the role of monocytes and macrophages in circulating blood as HIV reservoirs, the Johns Hopkins-led team of scientists obtained blood samples between 2018 and 2022 from 10 men with HIV, all of them taking long-term, standard antiretroviral medications.

The researchers extracted blood cells from the samples and grew the cells in the laboratory. Typically, monocytes transform very quickly -; within about three days -; into macrophages, producing monocyte-derived macrophages.

All 10 men had detectable HIV DNA in their monocytes-turned-macrophages, but at levels 10 times lower than those found in the men’s CD4+ T cells, the well-established HIV reservoir.

For the next phase of the research, to determine if HIV genomes were present in monocytes prior to macrophage differentiation, the team used an experimental assay to detect intact HIV genomes in monocytes. The assay was based on one that fellow Johns Hopkins scientist Robert Siliciano, M.D., Ph.D., developed in 2019 to detect the HIV genome in CD4+ T cells.

The scientists, including research associate Celina Abreu, Ph.D., used the assay on blood samples taken from another group of 30 people (eight men from the first group and 22 female participants) with HIV, also treated with standard antiretroviral therapy. The researchers found HIV DNA in the CD4+ T cells and in monocytes of all 30 participants.

The scientists were also able to isolate HIV produced by infected monocytes from half of the research participants. The virus extracted from these cells was able to infect CD4+ T cells.

Three of the participants had their blood examined several times over the four-year study period, and each time, the scientists found HIV DNA and infectious virus produced by their monocyte-derived macrophages. “These results suggest that monocytes may be a stable reservoir of HIV,” says Clements.

In further research, the Johns Hopkins research team plans to pinpoint the subset of monocytes found to harbor HIV DNA and the source of these infected cells.

Source:
Journal reference:

Veenhuis, R. T., et al. (2023). Monocyte-derived macrophages contain persistent latent HIV reservoirs. Nature Microbiology. doi.org/10.1038/s41564-023-01349-3.