Tag Archives: Phenotype

First-in-human nanoparticle HIV vaccine induces broad and publicly targeted helper T cell responses

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

Researchers from Fred Hutchinson Cancer Center in Seattle, Scripps Research in La Jolla, California, IAVI and other collaborating institutions have characterized robust T-cell responses in volunteers participating in the IAVI G001 Phase 1 clinical trial to test the safety and immune response of a self-assembling nanoparticle HIV vaccine.

Their work, published in Science Translational Medicine, signals a major step toward development of a vaccine approach to end the HIV/AIDS epidemic worldwide. The antigen used in this study was jointly developed by IAVI and Scripps Research and has been shown in previous analyses to stimulate VRC01-class B cells, an immune response considered promising enough for boosting in further studies.

We were quite impressed that this vaccine candidate produced such a vigorous T-cell response in almost all trial participants who received the vaccine. These results highlight the potential of this HIV-1 nanoparticle vaccine approach to induce the critical T-cell help needed for maturing antibodies toward the pathway of broadly neutralizing against HIV.”

Julie McElrath, MD, PhD, senior vice president and director of Fred Hutch’s Vaccine and Infectious Disease Division and co-senior author of the study

However, she added, this is the first step, and heterologous booster vaccines will still be needed to eventually produce VRC01-class broadly neutralizing antibodies, which in previous studies have demonstrated the ability to neutralize approximately 90% of HIV strains.

“We showed previously that this vaccine induced the desired B-cell responses from HIV broadly neutralizing antibody precursors. Here we demonstrated strong CD4 T-cell responses, and we went beyond what is normally done by drilling down to identify the T cell epitopes and found several broadly immunogenic epitopes that might be useful for developing boosters and for other vaccines,” William Schief, PhD, executive director of vaccine design for IAVI’s Neutralizing Antibody Center at Scripps Research and professor, Department of Immunology and Microbiology, at Scripps Research, who is co-senior author of the study.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

The trial is a phase 1, randomized, double-blind and placebo-controlled study to evaluate the safety and effectiveness of a nanoparticle HIV vaccine in healthy adult volunteers without HIV. It was comprised of two groups with 18 vaccine and six placebo recipients per group, with 48 total enrollees. Participants were given two doses of the vaccine or placebo eight weeks apart.

McElrath acknowledged the groundbreaking work of her lab team, the biostatistical team and Fred Hutch’s Vaccine Trials Unit for their invaluable contributions to the study. The Vaccine Trials Unit conducts multiple vaccine trials and was one of only two sites for this study.

Findings from the study include:

  • Vaccine-specific CD4 T cells were induced in almost all vaccine recipients.
  • Lymph node GC T follicular helper cells increased after vaccination compared to placebo.
  • Lumazine synthase protein, needed for self-assembly of the particle, also induced T-cell responses that can provide additional help to ultimately enhance efficacy in a sequential vaccine strategy.
  • Vaccine-specific CD4 T cells were polyfunctional and had diverse phenotypes.
  • LumSyn-specific CD8 T cells were highly polyfunctional and had a predominantly effector memory phenotype.
  • CD4 T-cell responses were driven by immunodominant epitopes with diverse and promiscuous HLA restriction.
  • CD8 T-cell responses to LumSyn were driven by HLA-A*02-restricted immunodominant epitopes B- and T-cell responses correlated within but not between LN and peripheral blood compartments.

This study was funded by the Bill & Melinda Gates Foundation Collaboration for AIDS Vaccine Discovery; IAVI Neutralizing Antibody Center; National Institute of Allergy and Infectious Diseases; and Ragon Institute of MGH, MIT and Harvard.

Study authors WRS and SM are inventors on a patent filed by Scripps and IAVI on the eOD-GT8 monomer and 60-mer immunogens (patent number 11248027, “Engineered outer domain (eOD) of HIV gp 120 and mutants thereof”). WRS, KWC and MJM are inventors on patents filed by Scripps, IAVI and Fred Hutch on immunodominant peptides from LumSyn (Title: Immunogenic compositions; filing no. 63127975).

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Source:
Journal reference:

Cohen, K. W., et al. (2023) A first-in-human germline-targeting HIV nanoparticle vaccine induced broad and publicly targeted helper T cell responses. Science Translational Medicine. doi.org/10.1126/scitranslmed.adf3309.

How the COVID pandemic has improved genomics

insights from industryDavide CacciharelliMolecular Biology and Genomics ProfessorUniversity of Naples

In this interview, Davide Cacchiarelli, Molecular Biology and Genomics Professor at the University of Naples talks to NewsMed about how the COVID pandemic has highlighted the vital role of genomic surveillance and improved genomics.

Please introduce yourself and what inspired your career in molecular biology and genomics?

My name is Davide Cacchiarelli, and I am a molecular biology and genomics professor at the University of Naples. I was inspired by the fact that genomics is classed as an effective tool to improve human health, dissect the molecular events happening in the cell and nucleus, and better understand how cells and organisms work.

Image Credit: ShutterStock/pinkeyes

In The Telethon Institute of Genetics and Medicine, you combine various disciplines with cell biology, molecular biology, and genomics. Why is having a multidisciplinary approach useful when making discoveries, particularly surrounding infectious diseases such as COVID?

The majority of the time, a single omic, measuring only gene expression by RNA sequencing, measuring only epigenetics, or measuring only phenotype, is insufficient to understand how a cell works.

The best solution is to combine all efforts to understand how these events happen, from the nucleus to the cell’s exterior. COVID, in particular, has been a case where acquiring one single omic or a single view of how the system works is ineffective in understanding how COVID behaviors occur in the population or clinically hospitalized patients.

We, therefore, try to combine the general information and patient outcome to get the best result regarding COVID infection.

Davide Cacciarelli at ICG17 – How the COVID pandemic has improved genomics

On what research areas are you and your team at TIGEM currently focusing?

Our group aims to answer various questions, from basic microbiology to developmental biology. Then we can re-engineer it for real regenerative medicine purposes. We also look at how we can effectively use genomics as a medical instrument that can be used to impact the healthcare of patients in our healthcare system.

You have recently co-authored a paper, “Improved SARS-CoV-2 sequencing surveillance allows the identification of new variants and signatures in infected patients.” Can you expand on that?

One of the significant issues in Italy regarding SARS-CoV-2 genome sequencing was the cost. Sequencing the COVID genome was also a tedious and elaborate procedure.

Image Credit: ShutterStock/Kateryna Kon

The main objective was first to make this approach economically affordable and create a proof of printing pulled by which this approach could become a cost-effective method for anyone and any country.

Our second approach, therefore, included integrating the genome information and the transcriptomic profiling of the patient airway epithelia. This helps us to understand how the genome evolves and allows us to track its evolution, in addition to seeing the response of the host respiratory epithelium. Finally, we implemented new ways to classify viral variants based on different characteristics using this approach.

What are the advantages of better identifying new cells, or two variants, for healthcare centers and patients?

The European Center for Disease Control has issued several requirements for next year focused on tracking respiratory viruses. One of these is tracking emerging variants as soon as possible, which we have done with COVID-19. We now know that new, specific variants can emerge in a short timeframe, so immediate tracking is crucial to help contain or at least delay the spreading of possible pathogenic variants.

MGI offers a variety of tools and technology surrounding genomics. Can you tell us more about some of the products used during your research and your experience with them?

At MGI, we have typically applied the COVID and whole genome solutions. We also have the freedom to test the stereo-seq they have in production this month. MGI can offer alternative solutions for various genome sequencing needs.

Image Credit: ShutterStock/peterschreiber.media

At present many sequencing genomic companies are coming up with different solutions. At MGI, we understand that the best genomic solution is the one that better fits your needs. With our experience, for example, with COVID, MGI had the right solution at the right moment.

How important is selecting the right sequencing technology for your research? When undertaking new research, what do you look for in a product/sequencer?

When the primary focus is not on identifying genes or mapping gene expression but on identifying or qualifying gene variants, there must be no issues in the sequencing, as the sequencing issue might be an error in the sequencing and misinterpreted data.

The error rate of MGI technology on DNB sequencing is extremely low, which offers significant benefits. Users can confidently rely on the data at the level of leaders in the field, which is what we look for when we start COVID genome sequencing.

You have often collaborated with other researchers throughout your research projects, especially concerning COVID. How vital have these collaborations been in accelerating your research?

Like many scientists who faced the COVID pandemic, I had much to learn. We used our knowledge in medical genetics and variant interpretation, and the crosstalk we had with virologists, MGI scientists, and genomic specialists was a step towards acquiring the best solution and the best effort to try to get those results as soon as possible, which is crucial for COVID sequencing.

Surprisingly, some scientists who had no interest in healthcare possessed knowledge valuable in tackling COVID issues. The circumstances and contingencies around the event forced them to think outside the box.

Do you believe that if we can understand SARS-CoV-2 better, we could better use this knowledge to prepare ourselves for future pandemics better? What advantages would this have for global health?

COVID did not give us any significant advantages for healthcare, but it may have for science. It highlighted how vital advanced genomics is to track diseases which influenced decisions at the governmental level.

Image Credit: ShutterStock/CKA

Today, several diseases require advanced genome sequencing, such as cancer diagnostics and medical genetics. Given that the issues with this problem affect a small population, you do not feel the urgency to improve specific knowledge or tests.

Therefore, the COVID pandemic has highlighted the vital role of genomic surveillance and improved genomics. Today, we have laboratories that, until two years ago, thought they could never afford to set up a genomic workflow; the pandemic forced them to enter the genomics field. Our mission as genomic scientists is to help them implement this solution in their lab because improving genomics in any lab is the best for healthcare in the future.

There is a saying, “omics for all.” As a scientist, what does that mean to you?

‘Omics for all’ has to be understood in two ways. It is critical to give everybody the chance to have access to omics. However, we need to remember that it is still a medical procedure. Thus, the omics flow offers everybody access to high-quality omics profiling of their genome, but under medical supervision.

Finally, what is the future for you in your research?

I will continue my basic research in my lab: studying how pluripotent cells and stem cells can be manipulated and organized for medical purposes. We also want to use the knowledge accumulated in the COVID pandemic to apply fast, cost-effective, and reliable genome sequencing to other types of screening.

Image Credit: ShutterStock/Anusorn Nakdee

With this in mind, we hope to screen for several hereditary cancers, for example, breast cancer inheritance. Therefore, we can effectively use the COVID strategies we set up for COVID sequencing as proof of principle to apply the sequencing to human and human disease-driving genes.

About MGI

MGI Tech Co., Ltd. (referred to as MGI) is committed to building core tools and technology to lead life science through intelligent innovation. MGI focuses on R&D, production, and sales of DNA sequencing instruments, reagents, and related products to support life science research, agriculture, precision medicine, and healthcare. MGI is a leading producer of clinical high-throughput gene sequencers, and its multi-omics platforms include genetic sequencing, mass spectrometry, medical imaging, and laboratory automation.

Founded in 2016, MGI has more than 1000 employees, nearly half of whom are R&D personnel. MGI operates in 39 countries and regions and has established multiple research and production bases around the world. Providing real-time, comprehensive, life-long solutions, its vision is to enable effective and affordable healthcare solutions for all.


$(function() { Azom.wireUpVideoThumbnailLazyLoading(); });

Source:

Novel subset of memory B cells predicts long-lived antibody responses to influenza vaccination

Memory B cells play a critical role to provide long-term immunity after a vaccination or infection. In a study published in the journal Immunity, researchers describe a distinct and novel subset of memory B cells that predict long-lived antibody responses to influenza vaccination in humans.

These effector memory B cells appear to be poised for a rapid serum antibody response upon secondary challenge one year later, Anoma Nellore, M.D., Fran Lund, Ph.D., and colleagues at the University of Alabama at Birmingham and Emory University report. Evidence from transcriptional and epigenetic profiling shows that the cells in this subset differ from all previously described memory B cell subsets.

The UAB researchers identified the novel subset by the presence of FcRL5 receptor protein on the cell surface. In immunology, a profusion of different cell-surface markers is used to identify and separate immune-cell types. In the novel memory B cell subset, FcRL5 acts as a surrogate marker for positive expression of the T-bet transcription factor inside the cells. Various transcription factors act as master regulators to orchestrate the expression of many different gene sets as various cell types grow and differentiate.

Nellore, Lund and colleagues found that the FcRL5+ T-bet+ memory B cells can be detected seven days after immunization, and the presence of these cells correlates with vaccine antibody responses months later. Thus, these cells may represent an early, easily monitored cellular compartment that can predict the development of a long-lived antibody response to vaccines.

This could be a boon to the development of a more effective yearly influenza vaccine. “New annual influenza vaccines must be tested, and then manufactured, months in advance of the winter flu season,” Lund said. “This means we must make an educated guess as to which flu strain will be circulating the next winter.”

Why are vaccine candidates made so far in advance? Pharmaceutical companies, Lund says, need to wait many weeks after vaccinating volunteers to learn whether the new vaccine elicits a durable immune response that will last for months. “One potential outcome of the current study is we may have identified a new way to predict influenza vaccine durability that would give us an answer in days, rather than weeks or months,” Lund said. “If so, this type of early ‘biomarker’ could be used to test flu vaccines closer to flu season -; and moving that timeline might give us a better shot at predicting the right flu strain for the new annual vaccine.”

Seasonal flu kills 290,000 to 650,000 people each year, according to World Health Organization estimates. The global flu vaccine market was more than $5 billion in 2020.

To understand the Immunity study, it is useful to remember what happens when a vaccinated person subsequently encounters a flu virus.

Following exposure to previously encountered antigens, such as the hemagglutinin on inactivated influenza in flu vaccines, the immune system launches a recall response dominated by pre-existing memory B cells that can either produce new daughter cells or cells that can rapidly proliferate and differentiate into short-lived plasmablasts that produce antibodies to decrease morbidity and mortality. These latter B cells are called “effector” memory B cells.

“The best vaccines induce the formation of long-lived plasma cells and memory B cells,” said Lund, the Charles H. McCauley Professor in the UAB Department of Microbiology and director of the Immunology Institute. “Plasma cells live in your bone marrow and make protective antibodies that can be found in your blood, while memory B cells live for many years in your lymph nodes and in tissues like your lungs.

“Although plasma cells can survive for decades after vaccines like the measles vaccine, other plasma cells wane much more quickly after vaccination, as is seen with COVID-19,” Lund said. “If that happens, memory B cells become very important because these long-lived cells can rapidly respond to infection and can quickly begin making antibody.”

In the study, the UAB researchers looked at B cells isolated from blood of human volunteers who received flu vaccines over a span of three years, as well as B cells from tonsil tissue obtained after tonsillectomies.

They compared naïve B cells, FcRL5+ T-bet+ hemagglutinin-specific memory B cells, FcRL5neg T-betneg hemagglutinin-specific memory B cells and antibody secreting B cells, using standard phenotype profiling and single-cell RNA sequencing. They found that the FcRL5+ T-bet+ hemagglutinin-specific memory B cells were transcriptionally similar to effector-like memory cells, while the FcRL5neg T-betneg hemagglutinin-specific memory B cells exhibited stem-like central memory properties.

Antibody-secreting B cells need to produce a lot of energy to churn out antibody production, and they also must turn on processes that protect the cells from some of the detrimental side effects of that intense metabolism, including controlling the dangerous reactive oxygen species and boosting the unfolded protein response.

The FcRL5+ T-bet+ hemagglutinin-specific memory B cells did not express the plasma cell commitment factor, but did express transcriptional, epigenetic and metabolic functional programs that poised these cells for antibody production. These included upregulated genes for energy-intensive metabolic processes and cellular stress responses.

Accordingly, FcRL5+ T-bet+ hemagglutinin-specific memory B cells at Day 7 post-vaccination expressed intracellular immunoglobulin, a sign of early transition to antibody-secreting cells. Furthermore, human tonsil-derived FcRL5+ T-bet+ memory B differentiated more rapidly into antibody-secreting cells in vitro than did FcRL5neg T-betneg hemagglutinin-specific memory B cells.

Lund and Nellore, an associate professor in the UAB Department of Medicine Division of Infectious Diseases, are co-corresponding authors of the study, “A transcriptionally distinct subset of influenza-specific effector memory B cells predicts long-lived antibody responses to vaccination in humans.”

Co-authors with Lund and Nellore are Esther Zumaquero, R. Glenn King, Betty Mousseau, Fen Zhou and Alexander F. Rosenberg, UAB Department of Microbiology; Christopher D. Scharer, Tian Mi, Jeremy M. Boss, Christopher M. Tipton and Ignacio Sanz, Emory University School of Medicine, Atlanta, Georgia; Christopher F. Fucile, UAB Informatics Institute; John E. Bradley and Troy D. Randall, UAB Department of Medicine, Division of Clinical Immunology and Rheumatology; and Stuti Mutneja and Paul A. Goepfert, UAB Department of Medicine Division of Infectious Diseases.

Funding for the work came from National Institutes of Health grants AI125180, AI109962 and AI142737 and from the UAB Center for Clinical and Translational Science.

Source:
Journal reference:

Nellore, A., et al. (2023). A transcriptionally distinct subset of influenza-specific effector memory B cells predicts long-lived antibody responses to vaccination in humans. Immunity. doi.org/10.1016/j.immuni.2023.03.001.

New SARS-CoV-2 Omicron XBB.1.5 variant has high transmissibility and infectivity, study finds

COVID-19 has caused significant global panic after its rapid emergence more than 3 years ago. Although we now have highly effective vaccines against the SARS-CoV-2 virus, which causes COVID-19, scientists continue to study emerging SARS-CoV-2 variants in order to safeguard public health and devise global preventive strategies against emerging variants. A team led by Japanese researchers has recently discovered that the SARS-CoV-2 Omicron XBB.1.5 variant, prevalent in the Western hemisphere, has high transmissibility and infectivity.

New SARS-CoV-2 Omicron XBB.1.5 variant has high transmissibility and infectivity, study finds
New SARS-CoV-2 variant may jeopardize public health across the globe. The SARS-CoV-2 Omicron XBB.1.5 variant spreads rapidly and is more infectious than its historic precursor. Image Credit: The University of Tokyo

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for millions of deaths worldwide. Although scientists have designed novel vaccines to counter COVID-19, they are constantly on the lookout for emerging variants that can bypass vaccine resistance and potentially jeopardize global public health. A team led by Japanese researchers has recently been successful in characterizing the new SARS-CoV-2 Omicron XBB.1.5 variant, which was first detected in October 2022. Their findings were published on January 31, 2023 in volume 23 of The Lancet Infectious Diseases.​​​

Says senior author Prof. Kei Sato from the Division of Systems Virology, The Institute of Medical Science, The University of Tokyo, Japan, “Because the Omicron XBB.1.5 variant can spread more rapidly than previous variants and has a potential to cause the next epidemic surge, we should carefully monitor it to safeguard public health.”

While studying emerging variants of the SARs-CoV-2 Omicron lineage, the research team made a startling discovery: the SARS-CoV-2 Omicron XBB.1.5 variant has a novel mutation in the spike (S) protein—the protein that anchors the virus firmly to the human angiotensin converting enzyme-2 (ACE2) receptor, thus facilitating the invasion of human cells. The serine-to-proline amino acid mutation noted at residue no. 486 in the S protein is virologically concerning because of a variety of reasons.

Sharing his concerns, first author Keiya Uriu from the Division of Systems Virology, Department of Microbiology and Immunology, The University of Tokyo, Japan, says, “In late 2022, the SARS-CoV-2 Omicron BQ.1 and XBB lineages, characterized by amino acid substitutions in the S protein and increased viral fitness, had become predominant in the Western and Eastern Hemisphere, respectively. In 2022, we elucidated the characteristics of a variety of newly emerging SARS-CoV-2 Omicron subvariants. At the end of 2022, the XBB.1.5 variant, a descendant of XBB.1 that acquired the S:S486P substitution, emerged and was rapidly spreading in the USA.”

To gain mechanistic insights into the infectivity, transmissibility, and immune response associated with XBB.1.5, the team conducted a series of experiments. For instance, upon conducting epidemic dynamics analysis—statistical modeling that facilitates the analysis of the general characteristics of any epidemic—the team realized that the relative effective reproduction number (Re) of XBB.1.5 was 1.2-fold greater than that of the parental XBB.1. This indicated that an individual with the XBB.1.5 variant could infect 1.2 times more people in the population than someone with the parental XBB.1 variant. Moreover, the team also realized that, as of December 2022, XBB.1.5 was rapidly outcompeting BQ.1.1, the predominant lineage in the United States.

Co-first-author Jumpei Ito from the Division of Systems Virology, remarks, “Our data suggest that XBB.1.5 will rapidly spread worldwide in the near future.”

The team also studied the virological features of XBB.1.5 to determine how tightly the S protein of the new variant interacts with the human ACE2 receptor. To this end, the researchers conducted a yeast surface display assay. The results showed that the dissociation constant (KD) corresponding to the physical interaction between the XBB.1.5 S receptor-binding domain (RBD) and the human ACE2 receptor is significantly (4.3-fold) lower than that for XBB.1 S RBD. “In other words, the XBB.1.5 variant binds to human ACE2 receptor with very high affinity,” explains Shigeru Fujita from the Division of Systems Virology.

Further experiments using lentivirus-based pseudoviruses also showed that XBB.1.5 had approximately 3-fold higher infectivity than XBB.1. These results suggest that XBB.1.5 exhibits a remarkably strong affinity to the human ACE2 receptor, which can be attributed to the S486P substitution.

The study by Prof. Sato and his team led to another important discovery from an immunization perspective. The XBB.1.5 S protein was found to be highly resistant to neutralization antibodies elicited by breakthrough infection with the BA.2/BA.5 subvariants. In other words, patients with prior infection from the BA.2/BA.5 subvariants may not show robust immunity against XBB.1.5, increasing their chances of infection and disease.

The results of our virological experiments explain why the Omicron XBB.1.5 variant has a higher transmissibility than past variants: This variant acquired strong binding ability to human ACE2 while maintaining a higher ability to escape from neutralizing antibodies.”

​​​​​​​Yusuke Kosugi, Division of Systems Virology, Department of Microbiology and Immunology, The University of Tokyo, Japan

Contributing members of The Genotype to Phenotype Japan (G2P-Japan) Consortium conclude, “The SARS-CoV-2 Omicron XBB.1.5 variant does show enhanced transmissibility. Although few cases have been detected in the Eastern hemisphere, it could become a looming threat. Imminent prevention measures are needed.”

​​​​​​​Thanks to the research team for the early warning! Meanwhile, we must continue adopting safe practices to defend ourselves from XBB.1.5. 

Source:
Journal reference:

Uriu, K., et al. (2023) Enhanced transmissibility, infectivity, and immune resistance of the SARS-CoV-2 omicron XBB.1.5 variant. The Lancet Infectious Diseases. doi.org/10.1016/S1473-3099(23)00051-8.

New discoveries made regarding autism onset in mouse models

Although autism is a common neurodevelopmental disorder, the multiple factors behind its onset are still not fully understood. Animal models of idiopathic autism, especially mice, are often used to help researchers understand the complicated mechanisms behind the disorder, with BTBR/J being the most commonly used mouse model in the world.

Now, an international research collaboration including Kobe University’s Professor TAKUMI Toru and Researcher Chia-wen Lin et al. have made new discoveries regarding autism onset in mouse models.

In their detailed series of experiments and analyses of BTBR/J mice and the other subspecies BTBR/R, they revealed that endogenous retrovirus activation increases a fetus’s susceptibility to autism. They also discovered that BTBR/R exhibits autistic-like behaviors without reduced learning ability, making it a more accurate model of autism than the widely-used BTBR/J model.

It is hoped that further research will contribute towards better classification of autism types, as well as the creation of new treatment strategies for neurodevelopmental disorders.

These research results were published in Molecular Psychiatry on March 7, 2023

Main points

  • The researchers analyzed BTBR/J, a widely used mouse model of autism, and its subspecies BTBR/Rusing MRI. This revealed that the corpus callosum, which connects the left and right hemispheres of the brain, was impaired in BTBR/J mice but not in BTBR/R mice.
  • Genome and transcription analysis showed that BTBR mice have increased levels of endogenous retrovirus genes.
  • Furthermore, single-cell RNA analysis of BTBR/R mice revealed changes in the expression of various genes (including stress response genes) that are indicative of endogenous retrovirus activation.
  • Even though BTBR/J and BTBR/R mice have the same ancestry, the results of various behavioral analysis experiments revealed differences in spatial learning ability and other behaviors between the two types of model mice.

Research background

Autism (autism spectrum disorder) is a neurodevelopmental disorder that remains largely unexplored despite the rapidly increasing number of patients. Reasons for this continuing increase in people diagnosed with autism include changes to diagnostic criteria and older fathers becoming more common. Autism is strongly related to genetic factors and can be caused by abnormalities in DNA structure, such as copy number variations. Animal models, especially mice, are often used in research to illuminate the pathology of autism. Among these models, BTBR/J is a mouse model of the natural onset of autism that is commonly used. Studies have reported various abnormalities in BTBR/J mice including impairment of the corpus callosum (which connects the left and right hemispheres of the brain) and excessive immune system signaling. However, it is not fully understood why this particular lineage displays autistic-like behavioral abnormalities.

The aim of the current study was to shed light on the onset mechanism of these autistic-like behavioral abnormalities by conducting comparative analysis on BTBR/J and its subspecies BTBR/R.

Research findings

First of all, the researchers conducted MRI scans on BTBR/J and BTBR/R mice to investigate structural differences in each region of the brain. The results revealed that there were differences between BTBR/J and BTBR/R mice in 33 regions including the amygdala. A particularly prominent difference discovered was that even though BTBR/J’s corpus callosum is impaired, BTBR/R’s is normal.

Next, the research group used the array CGH method to compare BTBR/R’s copy number variations with that of a normal mouse model (B6). They revealed that BTBR/R mice had significantly increased levels of endogenous retroviruses (ERV) in comparison to B6 mice. Furthermore, qRT-PCR tests revealed that these retroviruses were activated in BTBR/R mice. On the other hand, in B6 mice there was no change in the expression of LINE ERV (which is classified in the same repetitive sequence), indicating that this retroviral activation is specific to BTBR.

Subsequently, the researchers carried out single-cell RNA analysis on the tissue of embryonic BTBR mice (on the AGM and yolk sac). The results provide evidence of ERV activation in BTBR mice, as expression changes were observed in a group of genes downstream of ERV.

Lastly, the researchers comprehensively investigated the differences between BTBR/J and BTBR/R on a behavioral level. BTBR/R mice were less anxious than BTBR/J and showed qualitative changes in ultrasound vocalizations, which are measured as a way to assess communicative ability in mice. BTBR/R mice also exhibited more self-grooming behaviors and buried more marbles in the marble burying test. These two tests were designed to detect repetitive behavioral abnormalities in autistic individuals. From the results, it was clear that BTBR/R exhibits more repetitive behaviors (i.e. it is more symptomatic) than BTBR/J. The 3-chamber social interaction test, which measures how closely a mouse will approach another mouse, also revealed more pronounced social deficits in BTBR/R than BTBR/J mice (Figure 4i). In addition, a Barnes maze was used to conduct a spatial learning test, in which BTBR/J mice exhibited reduced learning ability compared to B6 (normal mice). BTBR/R mice, on the other hand, exhibited similar ability to B6.

Overall, the study revealed that retrovirus activation causes the copy number variants in BTBR mice to increase, which leads to the differences in behavior and brain structure seen in BTBR/J and BTBR/R mice (Figure 5).

Further developments

BTBR/J mice are widely used by researchers as a mouse model of autism. However, the results of this study highlight the usefulness of the other lineage of BTBR/R mice because they exhibit autistic-like behavior without compromised spatial learning ability. The results also suggest that it may be possible to develop new treatments for autism that suppress ERV activation. Furthermore, it is necessary to classify autism subtypes according to their onset mechanism, which is a vital first step towards opening up new avenues of treatment for autism.

Source:
Journal reference:

Lin, C-W., et al. (2023) An old model with new insights: endogenous retroviruses drive the evolvement toward ASD susceptibility and hijack transcription machinery during development. Molecular Psychiatry. doi.org/10.1038/s41380-023-01999-z.

Bacteria are known as single-celled organisms, although they can form communities like microbiomes or biofilms that work together …

Bacteria are known as single-celled organisms, although they can form communities like microbiomes or biofilms that work together in different ways. Now researchers have discovered another kind of multicellular bacteria, and this previously unknown species may provide new insights into how complex life evolved. The bacterium, called HS-3, was found in the walls of a limestone cave that is submerged in water intermittently. The findings have been reported in eLife.

An image by Kouhei Mizuno shows a plated colony of HS-3 bacteria, and its transparent and iridescent appearance.

Scientists have found that HS-3 has two phases during its life. When these bacteria reside on a solid surface, HS-3 cells will organize themselves into a layered colony with structures and properties that are similar to liquid crystal. When the HS-3 bacterial colony matures, it will turn into a semi-closed sphere that contains clusters of short, rod-shaped cells called coccobacillus that are released when they touch water.

“The emergence of multicellularity is one of the greatest mysteries of life on Earth,” noted corresponding study author Kouhei Mizuno, a professor at the National Institute of Technology (KOSEN) in Tokyo.

We still have a lot to learn about how complex life arose, though multicellular organisms are superior in function and adaptability, said Mizuno. “Established function and adaptability are not necessarily their own formative driving force. A curiosity of multicellularity is the conflict between the benefits of individuals versus the benefit of the group that must have existed in the early stage of the evolutionary transition,” and we don’t have a good model to study it, added Mizuno.

In the ecological scaffolding model, it’s hypothesized that environmental influences affect the evolution of a population; Darwinian natural selection may even apply to unicellular organisms, for example.

The study authors analyzed growing colonies of HS-3, and found that they reproduce as coccobacilli. But when the cells got longer, a single-layered colony of the cells oriented like a liquid crystal. Bulges at the edges of the colony relieved pressure on the structure, and enabled the arrangement to persist over a long period of time. This persistence may allow HS-3 to begin to take on multicellular properties, suggested the researchers.

After that 2D structure was maintained, additional layers began to form. After two days, there was rapid reproduction of the bacterial cells inside the structure, and the colony started to swell in three dimensions. Spheres formed, which conained coccobacillus cells. Internal cells were pushed out of the colony by the fifth day, which triggered a chain reaction in adjacent colonies, where the same events repeated. This has indicated a level of some multicellular control, suggested the researchers.

In the natural cave environment, the colonies are sometimes submerged. Internal coccobacilli can be released into the water, and the filamentous cell architecture remains in place. When grown on fresh agar plates, the coccobacilli cells could reproduce the original filamentous structure. The life cycle of HS-3 therefore seems to be reversible, and might be adaptable to changing conditions in places like caves.

“We have been surprised by the various, curious properties that HS-3 encompasses, one of which is that the multicellular behavior of this new species fits well with the recently proposed ecological scaffolding hypothesis. We now think that the leap towards multicellularity would be more elaborate and beautiful process than the one we have imagined so far,” added Mizuno and co-corresponding author Kazuya Morikawa, a professor in the Division of Biomedical Science, University of Tsukuba, Japan.

Sources: eLifesciences,org, eLife


Carmen Leitch