Tag Archives: RNA

Experts find remnants of ancient RNA viruses embedded inside reef-building corals

An international team of marine biologists has discovered the remnants of ancient RNA viruses embedded in the DNA of symbiotic organisms living inside reef-building corals.

The RNA fragments are from viruses that infected the symbionts as long ago as 160 million years. The discovery is described in an open-access study published this week in the Nature journal Communications Biology, and it could help scientists understand how corals and their partners fight off viral infections today. But it was a surprising find because most RNA viruses are not known for embedding themselves in the DNA of organisms they infect.

The research showed that endogenous viral elements, or EVEs, appear widely in the genomes of coral symbionts. Known as dinoflagellates, the single-celled algae live inside corals and provide them with their dramatic colors. The EVE discovery underscores recent observations that viruses other than retroviruses can integrate fragments of their genetic code into their hosts’ genomes.

So why did it get in there? It could just be an accident, but people are starting to find that these ‘accidents’ are more frequent than scientists had previously believed, and they’ve been found across all kinds of hosts, from bats to ants to plants to algae.”

Adrienne Correa, Study Co-Author, Rice University

That an RNA virus appears at all in coral symbionts was also a surprise.

“This is what made this project so interesting to me,” said study lead author Alex Veglia, a graduate student in Correa’s research group. “There’s really no reason, based on what we know, for this virus to be in the symbionts’ genome.”

The study was supported by the Tara Ocean Foundation and the National Science Foundation and led by Correa, Veglia and two scientists from Oregon State University, postdoctoral scholar Kalia Bistolas and marine ecologist Rebecca Vega Thurber. The research provides clues that can help scientists better understand the ecological and economic impact of viruses on reef health.

The researchers did not find EVEs from RNA viruses in samples of filtered seawater or in the genomes of dinoflagellate-free stony corals, hydrocorals or jellyfish. But EVEs were pervasive in coral symbionts that were collected from dozens of coral reef sites, meaning the pathogenic viruses were -; and probably remain -; picky about their target hosts.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

“There’s a huge diversity of viruses on the planet,” said Correa, an assistant professor of biosciences. “Some we know a lot about, but most viruses haven’t been characterized. We might be able to detect them, but we don’t know who serves as their hosts.”

She said viruses, including retroviruses, have many ways to replicate by infecting hosts. “One reason our study is cool is because this RNA virus is not a retrovirus,” Correa said. “Given that, you wouldn’t expect it to integrate into host DNA.

“For quite a few years, we’ve seen a ton of viruses in coral colonies, but it’s been hard to tell for sure what they were infecting,” Correa said. “So this is likely the best, most concrete information we have for the actual host of a coral colony-associated virus. Now we can start asking why the symbiont keeps that DNA, or part of the genome. Why wasn’t it lost a long time ago?”

The discovery that the EVEs have been conserved for millions of years suggests they may somehow be beneficial to the coral symbionts and that there is some kind of mechanism that drives the genomic integration of the EVEs.

“There are a lot of avenues we can pursue next, like whether these elements are being used for antiviral mechanisms within dinoflagellates, and how they are likely to affect reef health, especially as oceans warm,” Veglia said.

“If we’re dealing with an increase in the temperature of seawater, is it more likely that Symbiodiniaceae species will contain this endogenous viral element? Does having EVEs in their genomes improve their odds of fighting off infections from contemporary RNA viruses?” he said.

“In another paper, we showed there was an increase in RNA viral infections when corals underwent thermal stress. So there are a lot of moving parts. And this is another good piece of that puzzle.”

Correa said, “We can’t assume that this virus has a negative effect. But at the same time, it does look like it’s becoming more productive under these temperature stress conditions.”

Thurber is the Emile F. Pernot Distinguished Professor in Oregon State’s Department of Microbiology.

Source:
Journal reference:

Veglia, A. J., et al. (2023). Endogenous viral elements reveal associations between a non-retroviral RNA virus and symbiotic dinoflagellate genomes. Communications Biology. doi.org/10.1038/s42003-023-04917-9.

How superbug A. baumannii survives metal stress and resists antibiotics

The deadly hospital pathogen Acinetobacter baumannii can live for a year on a hospital wall without food and water. Then, when it infects a vulnerable patient, it resists antibiotics as well as the body’s built-in infection-fighting response. The World Health Organization (WHO) recognises it as one of the three top pathogens in critical need of new antibiotic therapies.

Now, an international team, led by Macquarie University researchers Dr. Ram Maharjan and Associate Professor Amy Cain, have discovered how the superbug can survive harsh environments and then rebound, causing deadly infections. They have found a single protein that acts as a master regulator. When the protein is damaged, the bug loses its superpowers allowing it to be controlled, in a lab setting. The research is published in Nucleic Acids Research.

“We hope that our paper will encourage researchers worldwide to refocus on developing drugs to fight this superbug, which is spreading through the world’s hospitals, and killing already vulnerable people in intensive care units and other high-risk areas,” says Associate Professor Cain, the senior author on the paper.

There are six superbugs that scare global health officials. E. coli, Klebsiella pneumoniae and other gram-negative bacteria have common pathways that give them antibiotic resistance. A. baumannii is different. It’s particularly tough, and it’s one of the most resistant pathogens we encounter. Strangely, we don’t know much about how it infects us.

Breakthrough in a research challenge

“In the lab we can see this pathogen is very tough. Other researchers have shown that you can desiccate the bug for a year and when they added water, it was still able to infect mice,” says Associate Professor Cain.

“The problem had been that A. baumannii is relatively new on the scene, emerging as a problem in hospitals in the 1980s. And it’s hard to genetically manipulate with the existing molecular biology toolkit. It usually only infects sick people, but it is very resistant to antibiotics making it incredibly hard to treat and difficult to safely research. So, we don’t know much about it. We don’t know where it came from, nor how it became so resistant and resilient. Now, thanks to this paper, we know how it deals with stress.”

Amy and her colleagues realised about five years ago that they could make a difference by trying to understand the underlying biology of A. baumannii. That led to a major investment by Macquarie University in the research, in biocontainment laboratories for staff safety, and in an ethical animal model using moth caterpillars. The research effort has been strongly supported by the Australian Council and the National Health and Medical Research Council.

“We hope that our paper will encourage researchers worldwide to refocus on developing drugs to fight this superbug, which is spreading through the world’s hospitals.”

During infection our cells fight back by either flooding or starving bacteria of essential metals such as copper and zinc. A. baumannii has strong drug pumps that push antibiotics, metals and other threats out of the cell.

“By studying how this bug deals with infection stresses, we’ve found an important uncharacterised regulatory protein (DksA). When we disrupt this protein, it leads to changes in about 20 per cent of the bug’s genome and breaks its pumping system,” says Dr Ram Maharjan, a Macquarie University researcher and first author on the paper.

Not only does this protein control stress response, but it also controls virulence. A. baumannii usually spreads in blood but our disruption also caused it to be completely undetected in the blood of both Galleria mellonella and mice. It also becomes super sticky and harmlessly sticks to organs.

This has been a massive global research effort over the past five years, working with colleagues at Flinders University, Monash University, University of Cambridge, University of Wurzburg.

  • Ram P Maharjan, Geraldine J Sullivan, Felise G Adams, Bhumika S Shah, Jane Hawkey, Natasha Delgado, Lucie Semenec, Hue Dinh, Liping Li, Francesca L Short, Julian Parkhill, Ian T Paulsen, Lars Barquist, Bart A Eijkelkamp, Amy K Cain. DksA is a conserved master regulator of stress response in Acinetobacter baumannii. Nucleic Acids Research, 2023; DOI: 10.1093/nar/gkad341
  • Macquarie University

    Novel computational platform can expand the pool of cancer immunotherapy targets

    Researchers at Children’s Hospital of Philadelphia (CHOP) and the University of California, Los Angeles (UCLA) have developed a computational platform capable of discovering tumor antigens derived from alternative RNA splicing, expanding the pool of cancer immunotherapy targets. The tool, called “Isoform peptides from RNA splicing for Immunotherapy target Screening” (IRIS), was described in a paper published today in the Proceedings of the National Academy of Sciences.

    Immunotherapy has revolutionized cancer treatment, but for many cancers including pediatric cancers, the repertoire of antigens is incomplete, underscoring a need to expand the inventory of actionable immunotherapy targets. We know that aberrant alternative RNA splicing is widespread in cancer and generates a range of potential immunotherapy targets. In our study, we were able to show that our computational platform was able to identify immunotherapy targets that arise from alternative splicing, introducing a broadly applicable framework for discovering novel cancer immunotherapy targets that arise from this process.”

    Yi Xing, PhD, co-senior author, director of the Center for Computational and Genomic Medicine at CHOP

    Cancer immunotherapy has ushered in a sea change in the treatment of many hematologic cancers, harnessing the power of a patient’s own immune system to fight the disease. Chimeric antigen receptor T-cell (CAR-T) and T cell receptor-engineered T cell (TCR-T) therapies modify a patient’s own T cells to attack known antigens on the surface of cancer cells and have often led to durable responses for cancers that were once considered incurable. However, the field has encountered challenges in the solid tumor space, in large part due to a lack of known and suitable targets for these cancers, highlighting the need for novel approaches to expand the pool of immunotherapy targets.

    Alternative splicing is an essential process that allows for one gene to code for many gene products, based on where the RNA is cut and joined, or spliced, before being translated into proteins. However, the splicing process is dysregulated in cancer cells, which often take advantage of this process to produce proteins that promote growth and survival, allowing them to replicate uncontrollably and metastasize. This happens in many adult and pediatric cancers. Scientists have suggested splicing dysregulation could be a source of novel tumor antigens for immunotherapy, but identifying such antigens has been a challenge.

    To address this difficulty, the researchers created IRIS to leverage large-scale tumor and normal RNA sequencing data and incorporate multiple screening approaches to discover tumor antigens that arise due to alternative splicing. Integrating RNA sequencing-based transcriptomics data and mass spectrometry-based proteomics data, the researchers showed that hundreds of IRIS-predicted TCR targets are presented by human leukocyte antigen (HLA) molecules, the part of the human immune system that presents antigens to T cells.

    if (g_displayableSlots.mobileMiddleMrec) {
    pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
    }

    The researchers then applied IRIS to RNA sequencing data from neuroendocrine prostate cancer (NEPC), a metastatic and highly lethal disease known to involve shifts in RNA splicing, as discovered in a prior study by CHOP and UCLA researchers. From 2,939 alternative splicing events enriched in NEPC, IRIS predicted 1,651 peptides as potential TCR targets. The researchers then applied a more stringent screening test, which prioritized 48 potential targets. Interestingly, the researchers found that these targets were highly enriched for peptides encoded by short sequences of less than 30 nucleotides in length – also known as “microexons” – which may arise from a unique program of splicing dysregulation in this type of cancer.

    To validate the immunogenicity of these targets, the researchers isolated T cells reactive to IRIS-predicted targets, and then used single-cell sequencing to identify the TCR sequences. The researchers modified human peripheral blood mononuclear cells with seven TCRs and found they were highly reactive against targets predicted by IRIS to be good immunotherapy candidates. One TCR was particularly efficient at killing tumor cells expressing the target peptide of interest.

    “Immunotherapy is a powerful tool that has had a significant impact on the treatment of some cancers, but the benefits have not been fully realized in many lethal cancers that could benefit from this approach,” said Owen N. Witte, MD, University Professor of Microbiology, Immunology, and Molecular Genetics and member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA. “The discovery of new antigenic targets that may be shared among different patients – and even different tumor types – could be instrumental in expanding the value of cell-based therapies. Analyzing massive amounts of data on tumor and normal tissues, which requires sophisticated computational tools like those developed by the Xing Lab, provides actionable insights on targets that one day could be tested in the clinic.”

    “This proof-of-concept study demonstrates that alternatively spliced RNA transcripts are viable targets for cancer immunotherapy and provides a big data and multiomics-powered computational platform for finding these targets,” Dr. Xing added. “We are applying IRIS for target discovery across a wide range of pediatric and adult cancers. We are also developing a next-generation IRIS platform that harnesses newer transcriptomics technologies, such as long read and single cell analysis.”

    This research was supported in part by the Immuno-Oncology Translational Network (IOTN) of the National Cancer Institute’s Cancer Moonshot Initiative, other National Institutes of Health funding, the Parker Institute for Cancer Immunotherapy, the Cancer Research Institute, and the Ressler Family Fund.

    Source:
    Journal reference:

    Pan, Y., et al. (2023) IRIS: Discovery of cancer immunotherapy targets arising from pre-mRNA alternative splicing. PNAS. doi.org/10.1073/pnas.2221116120.

    How the COVID pandemic has improved genomics

    insights from industryDavide CacciharelliMolecular Biology and Genomics ProfessorUniversity of Naples

    In this interview, Davide Cacchiarelli, Molecular Biology and Genomics Professor at the University of Naples talks to NewsMed about how the COVID pandemic has highlighted the vital role of genomic surveillance and improved genomics.

    Please introduce yourself and what inspired your career in molecular biology and genomics?

    My name is Davide Cacchiarelli, and I am a molecular biology and genomics professor at the University of Naples. I was inspired by the fact that genomics is classed as an effective tool to improve human health, dissect the molecular events happening in the cell and nucleus, and better understand how cells and organisms work.

    Image Credit: ShutterStock/pinkeyes

    In The Telethon Institute of Genetics and Medicine, you combine various disciplines with cell biology, molecular biology, and genomics. Why is having a multidisciplinary approach useful when making discoveries, particularly surrounding infectious diseases such as COVID?

    The majority of the time, a single omic, measuring only gene expression by RNA sequencing, measuring only epigenetics, or measuring only phenotype, is insufficient to understand how a cell works.

    The best solution is to combine all efforts to understand how these events happen, from the nucleus to the cell’s exterior. COVID, in particular, has been a case where acquiring one single omic or a single view of how the system works is ineffective in understanding how COVID behaviors occur in the population or clinically hospitalized patients.

    We, therefore, try to combine the general information and patient outcome to get the best result regarding COVID infection.

    Davide Cacciarelli at ICG17 – How the COVID pandemic has improved genomics

    On what research areas are you and your team at TIGEM currently focusing?

    Our group aims to answer various questions, from basic microbiology to developmental biology. Then we can re-engineer it for real regenerative medicine purposes. We also look at how we can effectively use genomics as a medical instrument that can be used to impact the healthcare of patients in our healthcare system.

    You have recently co-authored a paper, “Improved SARS-CoV-2 sequencing surveillance allows the identification of new variants and signatures in infected patients.” Can you expand on that?

    One of the significant issues in Italy regarding SARS-CoV-2 genome sequencing was the cost. Sequencing the COVID genome was also a tedious and elaborate procedure.

    Image Credit: ShutterStock/Kateryna Kon

    The main objective was first to make this approach economically affordable and create a proof of printing pulled by which this approach could become a cost-effective method for anyone and any country.

    Our second approach, therefore, included integrating the genome information and the transcriptomic profiling of the patient airway epithelia. This helps us to understand how the genome evolves and allows us to track its evolution, in addition to seeing the response of the host respiratory epithelium. Finally, we implemented new ways to classify viral variants based on different characteristics using this approach.

    What are the advantages of better identifying new cells, or two variants, for healthcare centers and patients?

    The European Center for Disease Control has issued several requirements for next year focused on tracking respiratory viruses. One of these is tracking emerging variants as soon as possible, which we have done with COVID-19. We now know that new, specific variants can emerge in a short timeframe, so immediate tracking is crucial to help contain or at least delay the spreading of possible pathogenic variants.

    MGI offers a variety of tools and technology surrounding genomics. Can you tell us more about some of the products used during your research and your experience with them?

    At MGI, we have typically applied the COVID and whole genome solutions. We also have the freedom to test the stereo-seq they have in production this month. MGI can offer alternative solutions for various genome sequencing needs.

    Image Credit: ShutterStock/peterschreiber.media

    At present many sequencing genomic companies are coming up with different solutions. At MGI, we understand that the best genomic solution is the one that better fits your needs. With our experience, for example, with COVID, MGI had the right solution at the right moment.

    How important is selecting the right sequencing technology for your research? When undertaking new research, what do you look for in a product/sequencer?

    When the primary focus is not on identifying genes or mapping gene expression but on identifying or qualifying gene variants, there must be no issues in the sequencing, as the sequencing issue might be an error in the sequencing and misinterpreted data.

    The error rate of MGI technology on DNB sequencing is extremely low, which offers significant benefits. Users can confidently rely on the data at the level of leaders in the field, which is what we look for when we start COVID genome sequencing.

    You have often collaborated with other researchers throughout your research projects, especially concerning COVID. How vital have these collaborations been in accelerating your research?

    Like many scientists who faced the COVID pandemic, I had much to learn. We used our knowledge in medical genetics and variant interpretation, and the crosstalk we had with virologists, MGI scientists, and genomic specialists was a step towards acquiring the best solution and the best effort to try to get those results as soon as possible, which is crucial for COVID sequencing.

    Surprisingly, some scientists who had no interest in healthcare possessed knowledge valuable in tackling COVID issues. The circumstances and contingencies around the event forced them to think outside the box.

    Do you believe that if we can understand SARS-CoV-2 better, we could better use this knowledge to prepare ourselves for future pandemics better? What advantages would this have for global health?

    COVID did not give us any significant advantages for healthcare, but it may have for science. It highlighted how vital advanced genomics is to track diseases which influenced decisions at the governmental level.

    Image Credit: ShutterStock/CKA

    Today, several diseases require advanced genome sequencing, such as cancer diagnostics and medical genetics. Given that the issues with this problem affect a small population, you do not feel the urgency to improve specific knowledge or tests.

    Therefore, the COVID pandemic has highlighted the vital role of genomic surveillance and improved genomics. Today, we have laboratories that, until two years ago, thought they could never afford to set up a genomic workflow; the pandemic forced them to enter the genomics field. Our mission as genomic scientists is to help them implement this solution in their lab because improving genomics in any lab is the best for healthcare in the future.

    There is a saying, “omics for all.” As a scientist, what does that mean to you?

    ‘Omics for all’ has to be understood in two ways. It is critical to give everybody the chance to have access to omics. However, we need to remember that it is still a medical procedure. Thus, the omics flow offers everybody access to high-quality omics profiling of their genome, but under medical supervision.

    Finally, what is the future for you in your research?

    I will continue my basic research in my lab: studying how pluripotent cells and stem cells can be manipulated and organized for medical purposes. We also want to use the knowledge accumulated in the COVID pandemic to apply fast, cost-effective, and reliable genome sequencing to other types of screening.

    Image Credit: ShutterStock/Anusorn Nakdee

    With this in mind, we hope to screen for several hereditary cancers, for example, breast cancer inheritance. Therefore, we can effectively use the COVID strategies we set up for COVID sequencing as proof of principle to apply the sequencing to human and human disease-driving genes.

    About MGI

    MGI Tech Co., Ltd. (referred to as MGI) is committed to building core tools and technology to lead life science through intelligent innovation. MGI focuses on R&D, production, and sales of DNA sequencing instruments, reagents, and related products to support life science research, agriculture, precision medicine, and healthcare. MGI is a leading producer of clinical high-throughput gene sequencers, and its multi-omics platforms include genetic sequencing, mass spectrometry, medical imaging, and laboratory automation.

    Founded in 2016, MGI has more than 1000 employees, nearly half of whom are R&D personnel. MGI operates in 39 countries and regions and has established multiple research and production bases around the world. Providing real-time, comprehensive, life-long solutions, its vision is to enable effective and affordable healthcare solutions for all.


    $(function() { Azom.wireUpVideoThumbnailLazyLoading(); });

    Source:

    Novel assay based on hybrid DNA-RNA probe for detecting food contaminated with salmonella

    A team of researchers have developed an easy-to-use colorimetric assay for the detection of food contaminated with salmonella. The assay is based on a novel nucleic acid probe that is cleaved by an RNase enzyme specific to the salmonella species. As the team report in the journal Angewandte Chemie, this specific enzymatic cleavage principle made it possible to build a sensitive but simple and portable test system using colloidal gold.

    Novel assay based on hybrid DNA-RNA probe for detecting food contaminated with salmonella​​​​​​​

    Image Credit: Angewandte Chemie

    Consumption of food contaminated with Salmonella typhimurium, whether eggs, ground meat, or chicken, can lead to severe food poisoning. However, suspected cases of salmonella are usually only confirmed several days later, when the bacteria are detected in microbiology laboratories by growing them in culture. A team of researchers led by Yingfu Li, Tohid Didar, and Carlos Filipe of McMaster University in Hamilton, Canada, have now developed a novel test system based on a hybrid DNA-RNA probe that specifically and rapidly detects salmonella, without the need for microbiological diagnostics or expensive analytical equipment.

    Using a multi-round selection process, the McMaster team uncovered an artificial DNA-RNA hybrid probe that is a substrate for a salmonella-specific form of an RNase H enzyme. Based on this highly specific enzymatic recognition, the team first developed a fluorescence-based assay on salmonella RNase H, and then extended the principle to a simple, portable salmonella assay based on a colloidal gold colorimetry.

    if (g_displayableSlots.mobileMiddleMrec) {
    pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
    }

    Colloidal gold is a common color reagent familiar to many of us from its use in SARS-CoV-2 antigen test strips. In a slight departure from this methodology, however, the team did not use a paper strip as the basis for their assay, but instead turned to plastic pipette tips, which are commonly used in the laboratory to measure specific amounts of liquids.

    For the preparation of the colorimetric assay, the inner wall of a pipette tip was first coated with DNA-functionalized nanogold. A mixture of reagents composed of nanogold-DNA and the DNA-RNA probe were then sucked up into the pipette tip, causing a double layer of nanogold to form on the walls, because the DNA-RNA hybrid probe links both layers.

    However, when the sample mixture contains salmonella, the upper layer is released thanks to the salmonella RNase H specifically cleaving the DNA-RNA linker probe. When the gold-containing solution is then drained onto an absorbent pad with a nylon membrane, a clear red spot indicates the presence of salmonella in the sample being tested. The team also tested the specificity of their system, finding it did not falsely detect the presence of other bacteria containing RNAse H.

    The authors highlight that the test is not only much less complex than other methods for detecting salmonella, but also much faster. In contrast to other methods, only one hour of incubation in a pipette tip is required for highly sensitive detection of salmonella, for example, in ground beef. In the future, the team envision developing more nucleic acid probes which can specifically detect other infectious pathogens, for example coliform bacteria such as E. coli.

    Source:
    Journal reference:

    Li, J., et al. (2023). A Simple Colorimetric Au‐on‐Au Tip Sensor with a New Functional Nucleic Acid Probe for Food‐borne Pathogen Salmonella typhimurium. Angewandte Chemie International Edition. doi.org/10.1002/anie.202300828.

    Study expands the knowledge about gut viral diversity in healthy infants

    Viruses are usually associated with illness. But our bodies are full of both bacteria and viruses that constantly proliferate and interact with each other in our gastrointestinal tract. While we have known for decades that gut bacteria in young children are vital to protect them from chronic diseases later on in life, our knowledge about the many viruses found there is minimal.

    A few years back, this gave University of Copenhagen professor Dennis Sandris Nielsen the idea to delve more deeply into this question. As a result, a team of researchers from COPSAC (Copenhagen Prospective Studies on Asthma in Childhood) and the Department of Food Science at UCPH, among others, spent five years studying and mapping the diaper contents of 647 healthy Danish one-year-olds.

    “We found an exceptional number of unknown viruses in the feces of these babies. Not just thousands of new virus species – but to our surprise, the viruses represented more than 200 families of yet to be described viruses. This means that, from early on in life, healthy children are tumbling about with an extreme diversity of gut viruses, which probably have a major impact on whether they develop various diseases later on in life,” says Professor Dennis Sandris Nielsen of the Department of Food Science, senior author of the research paper about the study, now published in Nature Microbiology.

    The researchers found and mapped a total of 10,000 viral species in the children’s feces – a number ten times larger than the number of bacterial species in the same children. These viral species are distributed across 248 different viral families, of which only 16 were previously known. The researchers named the remaining 232 unknown viral families after the children whose diapers made the study possible. As a result, new viral families include names like Sylvesterviridae, Rigmorviridae and Tristanviridae.

    Bacterial viruses are our allies

    This is the first time that such a systematic an overview of gut viral diversity has been compiled. It provides an entirely new basis for discovering the importance of viruses for our microbiome and immune system development. Our hypothesis is that, because the immune system has not yet learned to separate the wheat from the chaff at the age of one, an extraordinarily high species richness of gut viruses emerges, and is likely needed to protect against chronic diseases like asthma and diabetes later on in life.”

    Shiraz Shah, first author and senior researcher at COPSAC

    Ninety percent of the viruses found by the researchers are bacterial viruses – known as bacteriophages. These viruses have bacteria as their hosts and do not attack the children’s own cells, meaning that they do not cause disease. The hypothesis is that bacteriophages primarily serve as allies:

    “We work from the assumption that bacteriophages are largely responsible for shaping bacterial communities and their function in our intestinal system. Some bacteriophages can provide their host bacterium with properties that make it more competitive by integrating its own genome into the genome of the bacterium. When this occurs, a bacteriophage can then increase a bacterium’s ability to absorb e.g. various carbohydrates, thereby allowing the bacterium to metabolize more things,” explains Dennis Sandris Nielsen, who continues:

    “It also seems like bacteriophages help keep the gut microbiome balanced by keeping individual bacterial populations in check, which ensures that there are not too many of a single bacterial species in the ecosystem. It’s a bit like lion and gazelle populations on the savannah.”

    if (g_displayableSlots.mobileMiddleMrec) {
    pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
    }

    Shiraz Shah adds:

    “Previously, the research community mostly focused on the role of bacteria in relation to health and disease. But viruses are the third leg of the stool and we need to learn more about them. Viruses, bacteria and the immune system most likely interact and affect each other in some type of balance. Any imbalance in this relationship most likely increases the risk of chronic disease.”

    The remaining ten percent of viruses found in the children are eukaryotic – that is, they use human cells as hosts. These can be both friends and foes for us:

    “It is thought-provoking that all children run around with 10-20 of these virus types that infect human cells. So, there is a constant viral infection taking place, which apparently doesn’t make them sick. We just know very little about what’s really at play. My guess is that they’re important for training our immune system to recognise infections later. But it may also be that they are a risk factor for diseases that we have yet to discover,” says Dennis Sandris Nielsen.

    Could play an important role in inflammatory diseases

    The researchers have yet to discover where the many viruses in the one-year-olds come from. Their best answer thus far is the environment:

    “Our gut is sterile until we are born. During birth, we are exposed to bacteria from the mother and environment. It is likely that some of the first viruses come along with these initial bacteria, while many others are introduced later via dirty fingers, pets, dirt that kids put in their mouths and other things in the environment,” says Dennis Sandris Nielsen.

    As Shiraz Shah points out, the entire field of research speaks to a huge global health problem:

    “A lot of research suggests that the majority of chronic diseases that we’re familiar with – from arthritis to depression – have an inflammatory component. That is, the immune system is not working as it ought to – which might be because it wasn’t trained properly. So, if we learn more about the role that bacteria and viruses play in a well-trained immune system, it can hopefully lead us to being able to avoid many of the chronic diseases that afflict so many people today.”

    The research groups have begun investigating the role of gut viruses in relation to a number of different diseases that occur in childhood, such as asthma and ADHD.

    Source:
    Journal reference:

    Shah, S. A., et al. (2023). Expanding known viral diversity in the healthy infant gut. Nature Microbiology. doi.org/10.1038/s41564-023-01345-7.

    Nasal SARS-CoV-2 vaccine outperforms existing vaccines in preclinical trial

    In a recent study published in the journal Nature Microbiology, researchers assess the role of the live-attenuated vaccine (LAV) sCPD9 in inducing systemic and mucosal immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants.

    Study: Live-attenuated vaccine sCPD9 elicits superior mucosal and systemic immunity to SARS-CoV-2 variants in hamsters. Image Credit: TopMicrobialStock / Shutterstock.com

    Study: Live-attenuated vaccine sCPD9 elicits superior mucosal and systemic immunity to SARS-CoV-2 variants in hamsters. Image Credit: TopMicrobialStock / Shutterstock.com

    Introduction

    Coronavirus disease 2019 (COVID-19) vaccines, currently administered through the intramuscular route, effectively stimulate the production of neutralizing antibodies, effector and central memory T-cells, germinal center B-cells, long-lived plasma cells, and nasal-resident CD8+ T-cells. The intramuscular route has lower efficacy in promoting long-lasting mucosal immunoglobulin A (IgA) and IgG responses, as well as pulmonary tissue-resident memory cell responses.

    Notably, mucosal antibodies are important in reducing viral infectivity and transmission at the site of entry. Tissue-resident memory cells have faster recall responses and can recognize cognate antigens earlier due to their local positioning.

    About the study

    In the present study, researchers compare the immune responses and preclinical efficacy of the Pfizer-BioNTech BNT162b2 messenger ribonucleic acid (mRNA) COVID-19 vaccine, adenovirus-vectored spike vaccine Ad2-spike, and LAV sCPD9 in Syrian hamsters.

    The efficiency and mechanism of action of the evaluated vaccines were evaluated in a heterologous SARS-CoV-2 Delta variant challenge condition. To this end, Syrian hamsters received one vaccine dose and were exposed to the SARS-CoV-2 Delta variant 21 days after vaccination to evaluate its effectiveness. Hamsters were administered two vaccine doses 21 days apart and were later infected with the virus 14 days after booster administration.

    Histopathology was used to examine challenged hamsters and determine any lung damage caused by infection. Single-cell RNA sequencing (scRNA-seq) was performed on lung specimens to establish a correlation between inflammation levels and cellular responses.

    The humoral responses of hamsters were assessed by analyzing their sera collected before and after vaccination and determining their neutralizing ability against SARS-CoV-2 variants at different time points.

    Results

    All vaccinations protected hamsters from weight loss induced by SARS-CoV-2 infection. However, the vaccines did not provide complete protection against SARS-CoV-2 Delta infection after a single dose, as viral RNA was still present in the respiratory tract. The sCPD9 vaccine was the only tested vaccine that successfully reduced replicating viral titers to undetectable levels within two days post-challenge (dpc).

    The overall efficacy of the SARS-CoV-2 vaccine was enhanced through prime-boost vaccination. Despite a significant reduction after prime-boost vaccination, all groups exhibited detectable viral RNA in oropharyngeal specimens and lungs. Nevertheless, sCPD9-based vaccination was more effective in decreasing viral RNA levels.

    Vaccinated animals exhibited a significant reduction in replication-competent vial levels in their lungs two days post-challenge (dpc). Only the sCPD9 booster vaccine effectively reduced replicating virus proportions below the detection threshold, irrespective of whether the entire vaccination series was heterologous or homologous.

    Furthermore, sCPD9 was highly effective in preventing inflammation and pneumonia after a single vaccination. This was demonstrated by the reduced levels of consolidated lung areas, along with lower scores for bronchitis, edema, and lung inflammation.

    Animals with different vaccination schedules showed more significant bronchial hyperplasia. Prime-boost regimens showed a similar trend, with the mRNA vaccine displaying better histological outcomes with a homologous boost.

    Homologous sCPD9 prime-boost vaccination offered better lung protection against inflammation. Both heterologous and homologous sCDP9 vaccinated hamsters exhibited reduced inflammation- and infection-related genes in their lung transcriptome.

    Sera from sCPD9 vaccine recipients showed higher neutralization capacity against the ancestral SARS-CoV-2 variant B.1 compared to other groups. The sCPD9 sera effectively neutralized the Beta and Delta variants, as well as the Omicron BA.1 sublineage.

    The neutralization capacity against Omicron BA.1 was reduced in all cohorts, with sCPD9 sera associated with significant neutralization. Neutralizing antibodies increased over time in all cohorts by five dpc due to challenge infection.

    Hamsters that received the sCPD9 or mRNA vaccine, along with the prime-only vaccination, produced more neutralizing antibodies than those that only received the prime-only vaccination. Booster vaccination improved the serum neutralization capacity for various variants, with Omicron BA.1 exhibiting the highest neutralization evasion capacity among the tested variants.

    Hamsters vaccinated with mRNA+sCDP9 and prime-boost sCDP9 produced notable IgG antibody responses against the SARS-CoV-2 spike, nucleocapsid protein, and open reading frame (ORF)-3a. Comparatively, hamsters vaccinated with prime-boost mRNA and Ad2 only exhibited IgG reactivity against the spike protein.

    Conclusions

    The study findings presented a comparison of vaccines across different platforms, including a novel LAV that provided better protection against SARS-CoV-2 infection than other types of COVID-19 vaccines. Importantly, these findings on enhanced immunity through heterologous prime-boost vaccination align with other recent studies that utilize systemic priming and intranasal boosting with Ad-2 vector or mRNA vaccines.

    Anti-SARS-CoV-2 IgA levels in the nasal mucosa are significantly higher among sCPD9-vaccinated animals. Animals vaccinated with sCPD9 showed significant improvement in protection against virus replication, lung inflammation, and tissue damage. Animals that received sCPD9 had a broader antigen recognition, likely due to the key features of LAV.

    Journal reference:
    • Nouailles, G., Adler, J. M., Pennitz, P., et al. (2023). Live-attenuated vaccine sCPD9 elicits superior mucosal and systemic immunity to SARS-CoV-2 variants in hamsters. Nature Microbiology 1-15. doi:10.1038/s41564-023-01352-8

    Mosquitoes’ saliva contains immune-dampening substances to increase infectivity of dengue viruses

    The saliva of mosquitoes infected with dengue viruses contains a substance that thwarts the human immune system and makes it easier for people to become infected with these potentially deadly viruses, new research reveals.

    Dengue has spread in recent years to Europe and the Southern United States in addition to longstanding hotspots in tropical and subtropical areas such as Southeast Asia, Africa and Latin America. The new discovery, from a University of Virginia School of Medicine scientist and his collaborators, helps explain why the disease is so easily transmitted and could eventually lead to new ways to prevent infection.

    “It is remarkable how clever these viruses are – they subvert mosquito biology to tamp down our immune responses so that infection can take hold,” said Mariano A. Garcia-Blanco, MD, PhD, who recently joined UVA as chair of the Department of Microbiology, Immunology and Cancer Biology. “There is no doubt in my mind that better understanding of the fundamental biology of transmission will eventually lead to effective transmission-blocking measures.”

    Further, Garcia-Blanco suspects that researchers will find similar immune-dampening substances accompanying other mosquito-borne infections such as Zika, West Nile and yellow fever.

    Our findings are almost certainly going to be applicable to infections with other flaviviruses. The specific molecules here are unlikely to apply to malaria, but the concept is generalizable to viral infections.”

    Mariano A. Garcia-Blanco, MD, PhD, UVA

    Understanding dengue

    Approximately half the world’s population is at risk for dengue, and roughly 400 million people are infected every year. Dengue’s symptoms, including fever, nausea and skin rash, are often mistaken for other diseases. Most people will have mild cases, but about 1 in 20 will develop severe illness that can lead to shock, internal bleeding and death. Unfortunately, it’s possible to contract dengue repeatedly, as it is caused by four related viruses transmitted primarily by the Aedes aegypti species of mosquito. There is no treatment, but the new discovery from Garcia-Blanco and his colleagues identifies an important contributor to the disease’s spread as researchers seek to find better ways to combat it.

    Garcia-Blanco and his team found that infected mosquitoes’ saliva contained not just the expected dengue virus but a powerful conspirator: molecules produced by the virus that can blunt the body’s immune response. The injection of these molecules, called sfRNAs, during the mosquito bite makes it more likely that the victim will become infected with dengue, the scientists conclude.

    “By introducing this RNA at the biting site, dengue-infected saliva prepares the terrain for an efficient infection and gives the virus an advantage in the first battle between it and our immune defenses,” the researchers write in a new scientific paper outlining their findings.

    Scientists who study mosquitoes previously had suspected that the insects’ saliva might contain some type of payload to enhance the potential for infection. Garcia-Blanco’s team’s new findings pinpoints one weapon in the viruses’ arsenal and opens the door to finding new ways to help reduce transmission and control the disease’s spread. For now, the best way to avoid getting seriously sick with dengue remains to avoid getting bitten.

    “It’s incredible that the virus can hijack these molecules so that their co-delivery at the mosquito bite site gives it an advantage in establishing an infection,” said researcher Tania Strilets, a graduate student with Garcia-Blanco and co-first author of the scientific paper. “These findings provide new perspectives on how we can counteract dengue virus infections from the very first bite of the mosquito.”

    Findings published

    The researchers have published their findings in the scientific journal PLOS Pathogens. The team consisted of Shih-Chia Yeh, Strilets, Wei-Lian Tan, David Castillo, Hacène Medkour, Félix Rey-Cadilhac, Idalba M. Serrato-Pomar, Florian Rachenne, Avisha Chowdhury, Vanessa Chuo, Sasha R. Azar, Moirangthem Kiran Singh, Rodolphe Hamel, Dorothée Missé, R. Manjunatha Kini, Linda J. Kenney, Nikos Vasilakis, Marc A. Marti-Renom, Guy Nir, Julien Pompon and Garcia-Blanco. Most of Garcia-Blanco’s work on the project was conducted while he was at Duke-NUS Medical School and the University of Texas Medical Branch.

    Source:
    Journal reference:

    Yeh, S.-C., et al. (2023). The anti-immune dengue subgenomic flaviviral RNA is present in vesicles in mosquito saliva and is associated with increased infectivity. PLOS Pathogens. doi.org/10.1371/journal.ppat.1011224.

    Live attenuated nasal vaccine elicits superior immunity to SARS-CoV-2 variants in hamsters

    Since the beginning of the COVID-19 pandemic, researchers have been working on mucosal vaccines that can be administered through the nose. Now, scientists in Berlin have developed a live attenuated vaccine for the nose. In “Nature Microbiology”, they describe the special immune protection it induces.

    Coronaviruses spread primarily through the air. When infected people speak, cough, sneeze or laugh, they expel droplets of saliva containing the virus. Other people then breathe in these airborne pathogens and become infected themselves. A research team in Berlin decided to try to fight the virus that causes COVID-19 where it first takes hold: the mucous membranes of the nose, mouth, throat, and lungs. To do so, the scientists developed a live attenuated SARS-CoV-2 vaccine that is administered through the nose. In the latest issue of the journal “Nature Microbiology“, the interdisciplinary team describes how this live attenuated vaccine confers better immunity than vaccines injected into muscle.

    Already in the fall of last year, two nasal vaccination formulations were approved for use in India and China. These contain modified adenoviruses – which typically cause respiratory or gastrointestinal illnesses – that are self-attenuating, meaning they either replicate poorly or stop replicating altogether, and therefore never trigger disease. Other live nasal vaccines are currently undergoing development and testing around the world.

    Protection at the site of infection

    The benefits of a nasal vaccine go far beyond just providing an alternative for people afraid of needles. When a vaccine is injected, it infers immunity primarily in the blood and throughout the entire body. However, this means that the immune system only detects and combats coronaviruses relatively late on in an infection, as they enter the body via the mucous membranes of the upper respiratory tract. “It is here, therefore, that we need local immunity if we want to intercept a respiratory virus early on,” explains the study’s co-last author Dr. Jakob Trimpert, a veterinarian and research group leader at the Institute of Virology at Freie Universität Berlin.

    “Nasal vaccines are far more effective in this regard than injected vaccines, which fail or struggle to reach the mucous membranes,” emphasizes Dr. Emanuel Wyler, another co-last author. He has been researching COVID-19 since the start of the pandemic as part of the RNA Biology and Posttranscriptional Regulation Lab, which is led by Professor Markus Landthaler at the Berlin Institute for Medical Systems Biology of the Max Delbrück Center (MDC-BIMSB).

    In an ideal scenario, a live intranasal vaccine stimulates the formation of the antibody immunoglobulin A (IgA) directly on site, thus preventing infection from occurring in the first place. IgA is the most common immunoglobin in the mucous membranes of the airways. It is able to neutralize pathogens by binding to them and preventing them from infecting respiratory tract cells. At the same time, the vaccine stimulates systemic immune responses that help provide effective overall protection from infection.

    Memory T cells that reside in lung tissue play a similarly useful role to antibodies in the mucosa. These white blood cells remain in affected tissue long after an infection has passed and remember pathogens they have encountered before. Thanks to their location in the lungs, they can respond quickly to viruses that enter through the airways.” The co-first author draws attention to one of the observations the team made during their study: “We were able to show that prior intranasal vaccination results in the increased reactivation of these local memory cells in the event of a subsequent SARS-CoV-2 infection. Needless to say, we were particularly pleased with this result.”

    Dr. Geraldine Nouailles, immunologist and research group leader at the Department of Pneumology, Respiratory Medicine, and Intensive Care Medicine at Charité

    Local immunity impedes viral infection

    The scientists tested the efficacy of the newly developed intranasal COVID-19 vaccine on hamster models that had been established by Trimpert and his team at Freie Universität Berlin at the beginning of the pandemic. These rodents are currently the most important non-transgenic model organisms for research into the novel coronavirus, as they can be infected with the same virus variants as humans and develop similar symptoms. They found that after two doses of the vaccine, the virus could no longer replicate in the model organism. “We witnessed strong activation of the immunological memory, and the mucous membranes were very well protected by the high concentration of antibodies,” Trimpert explains. The vaccine could therefore also significantly reduce the transmissibility of the virus.

    In addition, the scientists compared the efficacy of the live attenuated vaccine with that of vaccines injected into the muscle. To do so, they vaccinated the hamsters either twice with the live vaccine, once with the mRNA and once with the live vaccine, or twice with an mRNA or adenovirus-based vaccine. Then, after the hamsters were infected with SARS-CoV-2, they used tissue samples from the nasal mucosa and lungs to see how strongly the virus was still able to attack the mucosal cells. They also determined the extent of the inflammatory response using single-cell sequencing. “The live attenuated vaccine performed better than the other vaccines in all parameters,” Wyler summarizes. This is probably due to the fact that the nasally administered vaccine builds up immunity directly at the viral entry site. In addition, the live vaccine contains all components of the virus – not just the spike protein, as is the case with the mRNA vaccines. While spike is indeed the virus’s most important antigen, the immune system can also recognize the virus from about 20 other proteins.

    Better than conventional vaccines

    The best protection against the SARS-CoV-2 was provided by double nasal vaccination, followed by the combination of a muscular injection of the mRNA vaccine and the subsequent nasal administration of the live attenuated vaccine. “This means the live vaccine could be particularly interesting as a booster,” says the study’s co-first author Julia Adler, a veterinarian and doctoral student at the Institute of Virology at Freie Universität Berlin.

    The principle of live attenuated vaccines is old and is already used in measles and rubella vaccinations, for example. But in the past, scientists generated the attenuation by chance – sometimes waiting years for mutations to evolve that produced an attenuated virus. The Berlin researchers, on the other hand, were able to specifically alter the genetic code of the coronaviruses. “We wanted to prevent the attenuated viruses from mutating back into a more aggressive variant,” explains Dr. Dusan Kunec, a scientist at the Institute of Virology at Freie Universität Berlin and another co-last author of the study. “This makes our live vaccine entirely safe and means it can be tailored to new virus variants,” stresses Kunec, who was instrumental in developing the vaccine.

    The next step is safety testing: The researchers are collaborating with RocketVax AG, a Swiss start-up based in Basel. The biotech company is developing the live attenuated SARS-CoV-2 vaccine and preparing a phase 1 clinical trial in humans. “We are thrilled to be at the forefront of developing and manufacturing the live attenuated SARS-CoV-2 vaccine as a nasal spray at RocketVax. Our goal is to rapidly scale-up production and advance clinical development towards market access to provide protection against post-COVID symptoms for all. We see great potential in the market for seasonal nasal vaccines”, says Dr. Vladimir Cmiljanovic, CEO of RocketVax.

    The future will show which nasal vaccine will ultimately provide better protection. The manufacturers of the nasal adenovirus vaccines developed in India and China have not yet applied for approval in Europe. But one thing is clear to the scientists: since they are administered as nasal sprays or drops, nasal vaccines are a good option for use in places with limited access to trained medical staff. They are also inexpensive to produce and easy to store and transport. Last but not least, live attenuated vaccines such as this one have been proven to provide cross-protection against related viral strains, and thus presumably also against future SARS-CoV-2 variants.

    Source:
    Journal reference:

    Nouailles, G., et al. (2023). Live-attenuated vaccine sCPD9 elicits superior mucosal and systemic immunity to SARS-CoV-2 variants in hamsters. Nature Microbiology. doi.org/10.1038/s41564-023-01352-8

    Some bacteria cells get hangry too, study finds

    Have you ever been so hungry that you become angry, otherwise known as “hangry?” New research by Adam Rosenthal, PhD, assistant professor in the Department of Microbiology and Immunology, has found that some bacteria cells get hangry too, releasing harmful toxins into our bodies and making us sick.

    Rosenthal and his colleagues from Harvard, Princeton and Danisco Animal Nutrition discovered, using a recently developed technology, that genetically identical cells within a bacterial community have different functions, with some members behaving more docile and others producing the very toxins that make us feel ill.

    Bacteria behave much more different than we traditionally thought. Even when we study a community of bacteria that are all genetically identical, they don’t all act the same way. We wanted to find out why.”

    Adam Rosenthal, PhD, Assistant Professor, Department of Microbiology and Immunology

    The findings, published in Nature Microbiology, are particularly important in understanding how and why bacterial communities defer duties to certain cells – and could lead to new ways to tackle antibiotic tolerance further down the line.

    Rosenthal decided to take a closer look into why some cells act as “well-behaved citizens” and others as “bad actors” that are tasked with releasing toxins into the environment. He selected Clostridium perfringens – a rod-shaped bacterium that can be found in the intestinal tract of humans and other vertebrates, insects, and soil – as his microbe of study.

    With the help of a device called a microfluidic droplet generator, they were able to separate, or partition, single bacterial cells into droplets to decode every single cell.

    They found that the C. perfringens cells that were not producing toxins were well-fed with nutrients. On the other hand, toxin-producing C. perfringens cells appear to be lacking those crucial nutrients.

    “If we give more of these nutrients,” postulated Rosenthal, “maybe we can get the toxin-producing cells to behave a little bit better.”

    Researchers then exposed the bad actor cells to a substance called acetate. Their hypothesis rang true. Not only did toxin levels drop across the community, but the number of bad actors reduced as well. But in the aftermath of such astounding results, even more questions are popping up.

    Now that they know that nutrients play a significant role in toxicity, Rosenthal wonders if there are particular factors found in the environment that may be ‘turning on’ toxin production in other types of infections, or if this new finding is only true for C. perfringens.

    Perhaps most importantly, Rosenthal theorizes that introducing nutrients to bacteria could provide a new alternative treatment for animals and humans, alike.

    For example, the model organism Clostridium perfringens is a powerful foe in the hen house. As the food industry is shifting away from the use of antibiotics, poultry are left defenseless from the rapidly spreading, fatal disease. The recent findings from Rosenthal et al. may give farmers a new tool to reduce pathogenic bacteria without the use of antibiotics.

    As for us humans, there is more work to be done. Rosenthal is in the process of partnering with colleagues across UNC to apply his recent findings to tackle antibiotic tolerance. Antibiotic tolerance occurs when some bacteria are able to dodge the drug target even when the community has not evolved mutations to make all cells resistant to an antibiotic. Such tolerance can result in a less-effective treatment, but the mechanisms controlling tolerance are not well understood.

    In the meantime, Rosenthal will continue to research these increasingly complex bacterial communities to better understand why they do what they do.

    Source:
    Journal reference:

    McNulty, R., Sritharan, D., Pahng, S. H., Meisch, J. P., Liu, S., Brennan, M. A., Saxer, G., Hormoz, S., & Rosenthal, A. Z. (2023). Probe-based bacterial single-cell RNA sequencing predicts toxin regulation. Nature Microbiology. doi.org/10.1038/s41564-023-01348-4.