Tag Archives: Salmonella

Study highlights two strategies used by Salmonella to escape the human body’s defenses

Like thieves that constantly look for ways to evade capture, Salmonella enterica, a disease-causing bacterium, uses various tactics to escape the human body’s defense mechanisms. In a new study, researchers from the Department of Microbiology and Cell Biology (MCB), IISc, highlight two such strategies that the bacterium uses to protect itself, both driven by the same protein.

When Salmonella enters the human body, each bacterial cell resides within a bubble-like structure known as Salmonella-containing vacuole (SCV). In response to the bacterial infection, the immune cells in our body produce reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with pathways triggered to break down these SCVs and fuse them with cellular bodies called lysosomes or autophagosomes, which destroy the bacteria. However, these bacteria have developed robust mechanisms to maintain vacuolar integrity, which is crucial for their survival. For example, when a bacterial cell divides, the vacuole surrounding it also divides, enabling every new bacterial cell to be ensconced in a vacuole. This also ensures that more vacuoles are present than the number of lysosomes which can digest them.

In the study published in Microbes and Infection, the IISc team deduced that a critical protein produced by Salmonella, known as SopB, prevents both the fusion of SCV with lysosomes as well as the production of lysosomes, in a two-pronged approach to protect the bacterium. “[This] gives the upper hand to bacteria to survive inside macrophages or other host cells,” explains Ritika Chatterjee, former PhD student in MCB and first author of the study. The experiments were carried out on immune cell lines and immune cells extracted from mice models.

SopB acts as a phosphatase – it aids in removing phosphate groups from phosphoinositide, a type of membrane lipid. SopB helps Salmonella change the dynamics of the vacuole – specifically it alters the type of inositol phosphates in the vacuole membrane – which prevents the vacuole’s fusion with lysosomes.

A previous study from the same team had reported that the number of lysosomes produced by the host cells decreases upon infection with Salmonella. The researchers also found that mutant bacteria that were unable to produce SopB were also unable to reduce host lysosome numbers. Therefore, they decided to look more closely at the role that SopB was playing in the production of lysosomes, using advanced imaging techniques.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

What they found was that SopB prevents the translocation of a critical molecule called Transcription Factor EB (TFEB) from the cytoplasm of the host cell into the nucleus. This translocation is vital because TFEB acts as a master regulator of lysosome production.

This is the first time we deciphered that SopB can work in a dual manner – it changes the phosphoinositide dynamics of SCV and affects TFEB’s translocation into the nucleus. While other groups have already reported the function of SopB in mediating invasion in epithelial cells, the novelty of our study lies in identification of the function of SopB in inhibiting the vacuolar fusion with existing autophagosomes/lysosomes, and the second mechanism, which provides Salmonella with a survival advantage by increasing the ratio of SCV to lysosomes.”

Dipshikha Chakravortty, Professor at MCB and corresponding author of the study

The researchers suggest that using small molecule inhibitors against SopB or activators of TFEB can help counter Salmonella infection.

In subsequent studies, the team plans to explore the role of another host protein called Syntaxin-17 whose levels also reduce during Salmonella infection. “How do the SCVs reduce the levels of Syntaxin-17? Do they exchange it with some other molecules, or do the bacteria degrade it? We [plan to] look into it next,” says Chakravortty.

Source:
Journal reference:

Chatterjee, R., et al. (2023) Deceiving The Big Eaters: Salmonella Typhimurium SopB subverts host cell Xenophagy in macrophages via dual mechanisms. Microbes and Infection. doi.org/10.1016/j.micinf.2023.105128.

Novel assay based on hybrid DNA-RNA probe for detecting food contaminated with salmonella

A team of researchers have developed an easy-to-use colorimetric assay for the detection of food contaminated with salmonella. The assay is based on a novel nucleic acid probe that is cleaved by an RNase enzyme specific to the salmonella species. As the team report in the journal Angewandte Chemie, this specific enzymatic cleavage principle made it possible to build a sensitive but simple and portable test system using colloidal gold.

Novel assay based on hybrid DNA-RNA probe for detecting food contaminated with salmonella​​​​​​​

Image Credit: Angewandte Chemie

Consumption of food contaminated with Salmonella typhimurium, whether eggs, ground meat, or chicken, can lead to severe food poisoning. However, suspected cases of salmonella are usually only confirmed several days later, when the bacteria are detected in microbiology laboratories by growing them in culture. A team of researchers led by Yingfu Li, Tohid Didar, and Carlos Filipe of McMaster University in Hamilton, Canada, have now developed a novel test system based on a hybrid DNA-RNA probe that specifically and rapidly detects salmonella, without the need for microbiological diagnostics or expensive analytical equipment.

Using a multi-round selection process, the McMaster team uncovered an artificial DNA-RNA hybrid probe that is a substrate for a salmonella-specific form of an RNase H enzyme. Based on this highly specific enzymatic recognition, the team first developed a fluorescence-based assay on salmonella RNase H, and then extended the principle to a simple, portable salmonella assay based on a colloidal gold colorimetry.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

Colloidal gold is a common color reagent familiar to many of us from its use in SARS-CoV-2 antigen test strips. In a slight departure from this methodology, however, the team did not use a paper strip as the basis for their assay, but instead turned to plastic pipette tips, which are commonly used in the laboratory to measure specific amounts of liquids.

For the preparation of the colorimetric assay, the inner wall of a pipette tip was first coated with DNA-functionalized nanogold. A mixture of reagents composed of nanogold-DNA and the DNA-RNA probe were then sucked up into the pipette tip, causing a double layer of nanogold to form on the walls, because the DNA-RNA hybrid probe links both layers.

However, when the sample mixture contains salmonella, the upper layer is released thanks to the salmonella RNase H specifically cleaving the DNA-RNA linker probe. When the gold-containing solution is then drained onto an absorbent pad with a nylon membrane, a clear red spot indicates the presence of salmonella in the sample being tested. The team also tested the specificity of their system, finding it did not falsely detect the presence of other bacteria containing RNAse H.

The authors highlight that the test is not only much less complex than other methods for detecting salmonella, but also much faster. In contrast to other methods, only one hour of incubation in a pipette tip is required for highly sensitive detection of salmonella, for example, in ground beef. In the future, the team envision developing more nucleic acid probes which can specifically detect other infectious pathogens, for example coliform bacteria such as E. coli.

Source:
Journal reference:

Li, J., et al. (2023). A Simple Colorimetric Au‐on‐Au Tip Sensor with a New Functional Nucleic Acid Probe for Food‐borne Pathogen Salmonella typhimurium. Angewandte Chemie International Edition. doi.org/10.1002/anie.202300828.

Researchers discover new role of small RNAs in Salmonella infections

Salmonella are food-borne pathogens that infect millions of people a year. To do so, these bacteria depend on a complex network of genes and gene products that allow them to sense environmental conditions. In a new paper, researchers have investigated the role of small RNAs that help Salmonella express their virulence genes.

The bacteria infect humans by first invading the cells of the intestine using a needle-like structure, called a type 3 secretion system. This structure injects proteins directly into the cells, setting off a cascade of changes that cause inflammation, and ultimately cause diarrhea. The genes that encode this system, and other genes that are needed for invasion, are found on a region of DNA known as the Salmonella pathogenicity island 1.

SPI-1 needs to be well controlled. If the type 3 secretion system needle apparatus is not made, Salmonella cannot cause an infection, and if too much of the needle apparatus is made, it makes Salmonella sick.”

Sabrina Abdulla, a graduate student in the Vanderpool lab, and the first author of the study

SPI-1 is controlled by an extensive regulatory network. First, three transcription factors: HilD, HilC, and RtsA, all control their own and each other’s DNA expression. They also activate another transcription factor, HilA, which activates the rest of the SPI-1 genes. If this isn’t complicated enough, SPI-1 also needs to sense a variety of environmental cues and tune the expression of its genes in order to infect its host.

“We have known for a long time that there are a lot of environmental factors that feed into the gene regulation in Salmonella. However, we didn’t know how. That’s when researchers started looking at small RNAs,” Abdulla said.

Small RNAs play a crucial role in determining how genes function in bacterial cells. Typically, these molecules either interact with proteins, or the mRNA, which carries the instructions for making proteins. As a result, sRNAs affect a variety of bacterial functions, including virulence and responses to the environment.

In this paper, the researchers looked at the sRNAs that regulate the hilD mRNA, specifically a sequence on the mRNA called the 3′ untranslated region, a part of the mRNA not involved in making the HilD protein. In bacteria, the 3′ UTRs are usually 50-100 nucleotides long. However, the 3′ UTR of the hilD mRNA was 300 nucleotides long.

“The starting point for my work was the observation that when we deleted the 3′ UTR, the expression of the hilD gene went up 60-fold,” Abdulla said. “We then decided to look for sRNAs that might be interacting with this region.”

The researchers determined that although the sRNAs Spot 42 and SdsR can both target the 3′ UTR, they do so in different regions. “This result suggests that the entire 3′ UTR is important for regulation,” Abdulla said. “We showed that the sRNAs stabilize the hilD mRNA and protect it from being degraded.”

“Such long 3′ UTRs have not been well studied. With more genomic research, people are realizing more and more that these longer regions exist and that they are important for regulation,” Abdulla said.

Using mice, the researchers also looked at whether Spot 42 and SdsR can affect how Salmonella causes infections. They performed mouse competition assays, where they introduced mutant bacteria that lacked the sRNAs and bacteria that contained the sRNAs, to see which strains survive and cause infection. “We found that when the sRNAs are deleted, the bacteria cannot survive in the host. We also showed that the sRNAs play a role in helping SPI-1 invade the host cells,” Abdulla said.

“Now that we know that sRNAs play an important role in controlling SPI-1 through their regulatory effects on the hilD 3′ UTR, we want to extend our studies in two directions. We’d like to understand more about how, at a molecular level, the sRNAs influence hilD mRNA levels. We’d also like to better understand how sRNAs participate in regulating expression of other important SPI-1 genes,” said Cari Vanderpool (MME/IGOH), a professor of microbiology.

Source:
Journal reference:

Abdulla, S.Z., et al. (2022) Small RNAs Activate Salmonella Pathogenicity Island 1 by Modulating mRNA Stability through the hilD mRNA 3′ Untranslated Region. Journal of Bacteriology. doi.org/10.1128/jb.00333-22.

Bacterial outer membrane vesicles: utility as vaccines and novel engineering approaches

In an article published in Frontiers in Microbiology, scientists have described the utility of gram-negative bacteria-derived outer membrane vesicles as vaccines and methods to expand their applications.

Study: Outer membrane vesicles: A bacterial-derived vaccination system. Image Credit: Maxx-Studio/Shutterstock
Study: Outer membrane vesicles: A bacterial-derived vaccination system. Image Credit: Maxx-Studio/Shutterstock

Background

Outer membrane vesicles (OMVs) are spherical lipid nanoparticles with a diameter of 20-300 nm. These vesicles are derived from the cell membrane of Gram-negative bacteria and are composed of bacterial proteins, lipids, nucleic acids, and other components.

OMVs derived from pathogenic or non-pathogenic bacteria play an essential role in bacterial pathogenesis, cell-to-cell communication, horizontal gene transfer, quorum sensing, and maintaining bacterial fitness. However, as a non-replicative component, OMVs cannot induce disease pathogenesis independently.  

Bacterial proteins and glycans make OMVs a potent immunogenic component that can be used as adjuvants to induce host immune response. Because of this property, OMVs are considered potential candidates for vaccine development.

Isolation of OMVs

Gram-negative bacteria release OMVs during growth or in stressful conditions. However, such spontaneous OMVs are released in low quantities and, thus, cannot be used for large-scale vaccine production.

Several strategies have been developed to increase OMV production. Sonication, vortexing, or EDTA-mediated extraction have been applied to mechanically disrupt the bacterial membrane, leading to the release of OMVs.

OMVs extracted by EDTA closely relate to the native bacterial membrane and induce comparable immune responses. In contrast, sonication and vortexing increase the amount of non-membrane components in the final product, resulting in increased antigenicity and reduced safety.

Detergent-based extraction is another well-documented method that produces OMVs with reduced levels of lipopolysaccharides (LPS), which are bacterial toxins. Despite reducing the risk of toxicity, this process leads to the loss of many bacterial proteins and lipoproteins, which in turn results in the suppression of OMV-stimulated immune responses.

Manipulating certain bacterial genes can increase vesiculation and, thus, can produce high levels of genetically-modified OMVs. The genes encoding bacterial lipoproteins Lpp and NlpI and the outer membrane protein OmpA are the major targets for genetic manipulation.

Heterologous OMVs

Non-pathogenic bacterial strains can express heterologous proteins to reduce toxicity and improve the immunogenicity of OMVs.

A protein of interest can be fused with a bacterial transmembrane protein, and the resulting plasmid can be introduced into the bacterial strain, which will subsequently produce recombinant OMVs expressing the desired protein on the surface.

Another potential strategy for expressing heterologous proteins is glycoengineering of the LPS O antigen. Glycosylated OMVs can be produced by expressing the O antigen gene of a pathogen in a non-pathogenic O-antigen mutant strain of bacteria.

OMV-induced immune response

The pathogen-associated molecular patterns present on the OMV outer membrane activate the pattern recognition receptors on the host cells, leading to the activation of innate immune signaling and the release of proinflammatory cytokines. The engulfment of OMVs by innate immune cells induces adaptive immune responses.

LPS acts as an adjuvant to induce an effective host immune response to the bacterial antigen expressed on the OMV surface. However, overexpression of LPS can lead to overstimulation of immune responses and induction of systemic toxic shock. Detergent-based preparations or genetic manipulations can be used to reduce the level of highly reactive LPS on the OMV surface.

OMV-based vaccines

OMVs expressing desired antigens can be administered into the body through various routes, including oral/intranasal, intramuscular, subcutaneous, intraperitoneal, and intradermal. It has recently been shown that OMV expressing the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces robust immune responses in hamsters when administered intranasally.

Two clinically-approved OMV vaccines, VA-MENGOC-BC™ and Bexsero™, are currently available against the invasive N. meningitidis serogroup B strain. The PorA protein expressed by this bacterium is highly variable between strains. The OMVs derived from the meningitis-causing strain have been used successfully to develop vaccines against this particular bacterial strain.

Many OMV vaccines are currently under development. These vaccine candidates have been designed to target N. gonorrhoeae, Shigella spp., Salmonella spp., extraintestinal pathogenic E. coli (EXPEC), V. cholerae, M. tuberculosis, and non-typeable H. influenzae.    

Besides anti-bacterial vaccines, OMVs have been used to produce vaccines against viruses, including influenza virus and coronavirus. Tumor-targeted OMVs containing therapeutic siRNA or tumor antigens have also been developed as therapeutic cancer vaccines.

Journal reference:

One Medicine: how human and veterinary medicine can benefit each other

Thought LeadersProfessor Roberto La RagioneChair of TrusteesHumanimal Trust

In this interview, News-Medical speaks to Professor Roberto La Ragione, Chair of Trustees at Humanimal Trust, about the concept of One Medicine and how human and veterinary medicine can collaborate, share knowledge, and initiate research for the benefit of both humans and animals. 

Please can you introduce yourself, tell us about your professional background, and your role at Humanimal Trust?

I am Professor Roberto La Ragione, Chair of Trustees at Humanimal Trust.

I graduated in 1995 and then studied for a postgraduate degree in veterinary microbiology at the Royal Veterinary College (University of London). In 1996, I moved to the government’s Veterinary Laboratories Agency (VLA) to undertake a Ph.D. on the pathogenesis of E. coli in poultry. Upon completing my Ph.D. studies, I commenced a post-doctoral position at Royal Holloway, University of London, studying E. coli virulence factors and vaccine development.

Since 2001, my work has focused largely on understanding the pathogenesis of zoonotic bacterial pathogens to develop control strategies. I have led several commercial, Defra, research councils (BBSRC, MRC, EPSRC, AHRC, Innovate) and EU projects in this area.

My current research interests focus on the pathogenesis of food-borne pathogens with a particular interest in Antimicrobial Resistance (AMR) and the development of intervention strategies, including vaccines, rapid diagnostic, pre, and probiotics. I have published over 190 papers in the area of host-microbe interaction, with a particular emphasis on E. coli, Salmonella, vaccines, probiotics, and AMR.

In 2005, I was appointed Head of Pathogenesis and Control at the AHVLA, and in 2010, I was appointed Professor of Veterinary Microbiology and Pathology at the University of Surrey. I gained the FRCPath in 2010, and in 2012, I was appointed the Associate Dean for Veterinary Strategy in the new School of Veterinary Medicine at the University of Surrey. In 2014, I was appointed to the position of Head of the Department of Pathology and Infectious Diseases and Director of the Veterinary Pathology Centre. In 2019 I was appointed Deputy Head of the School of Veterinary Medicine at the University of Surrey, and then in 2021, I was appointed Head of the School of Biosciences and Medicine.

I am the past president of the Med-Vet-Net Association and the Veterinary Research Club, the current Chair of Humanimal Trust, a member of the FSA ACMSF AMR sub-committee, a Trustee of the Houghton Trust, a member of the APHA Science Advisory Board and Chair of the Royal College of Pathologists Veterinary Pathology SAC. I am an Associate member of the European College of Veterinary Microbiology, and in 2020, I was awarded an Honorary Associateship of the Royal College of Veterinary Surgeons.

Humanimal Trust is a unique organization. Please could you tell us about the organization’s origin, purpose, and values?

Humanimal Trust is the only organization in the UK with the sole and specific purpose of progressing One Medicine.

It was founded in May 2014 by world-renowned orthopedic-neuro veterinary surgeon Professor Noel Fitzpatrick – otherwise known as the TV Supervet. As a vet, Noel Fitzpatrick experienced personally the deep divide between human and animal medicine and saw how unfair this was.

Image Credit: LightField Studios/Shutterstock.com

Image Credit: LightField Studios/Shutterstock.com

Frustrated by the lack of opportunities to share what he was learning from veterinary practice or to benefit from relevant learning from human medicine, he decided to create the platform himself. This laid the foundations for the work Humanimal Trust does today, removing barriers and seeking to close the divide between human and animal medicine.

Our five areas of work spell out I-CARE, which sums up the way we feel, our supporters feel, and we hope everybody will one day feel about One Medicine:

  • Influence – we care about bringing together everyone who cares about One Medicine to create a road map for change in public policy, education, and at the clinical coalface.
  • Collaboration – we care about creating opportunities for human and veterinary professionals and students to learn from one another (in person and virtually) by demonstrating One Medicine at work.
  • Awareness – we care that people should know and understand the benefits of One Medicine for humans and animals, about non-animal alternatives to laboratory models, and how much human and animal medicine can learn from one another’s clinical practice – saving time, money, and lives.
  • Research – we care about research – funding it, facilitating it, shouting about it – that could benefit humans and animals without using laboratory animal models.
  • Education – we care about learning – every child learning about the connections between humans and animals; veterinary and human medical students learning with and from one another; practitioners learning continuously from their peers.

Humanimal Trust advocates for One Medicine. What is One Medicine, when did this concept originate, and how has the understanding of it evolved in recent years?

The origins of One Medicine date back to the nineteenth century when Rudolf Virchow linked human and animal health. Sir William Osler, Dr. Calvin Schwabe, Lord Lawson Soulsby, and others have since continued to expand the One Medicine concept, identifying the connections, commonalities, and synergies between human and veterinary medicine.

It was whilst studying the history of medicine that Professor Fitzpatrick came upon a term used to describe human and veterinary medicine working with one another: One Medicine. The third edition of Dr. Calvin Schwabe’s seminal publication in 1984 of ‘Veterinary Medicine and Human Health’ which spoke of One Medicine, laid the foundation for what we now know as One Health, but in considering this text, Fitzpatrick identified a need to move away from a public health agenda to a common health agenda focusing on infectious and non-infectious diseases.

Moreover, when reviewing the three Rs (refinement, reduction, and replacement) in relation to animal use in research, it became clear that a fourth R was missing from the 3Rs principle – the principle of reciprocity so that not only do medical practitioners and allied researchers benefit, but also patients, regardless of their species.

By considering the contribution that animals can make to research by studying their lives and their responses to naturally occurring, spontaneous diseases rather than using experimental animal models in research, the use of animals in research can be significantly reduced.

One Medicine and the ‘Biology of the Future’ (Biology Week 2020)

Why is it currently the case that human and veterinary medicine are kept separate, and why would it be beneficial to change this?

Although the practice of bringing veterinary and human medical and research professionals together is thought to stimulate new and innovative research, historically, this has been challenging. A number of studies have investigated why this could be, and different levels of awareness and priorities may be one reason. A 2020 study, which surveyed vets and GPs in Australia, found that vets generally had more awareness and felt more confident in engaging in zoonoses management compared to GPs, and were also more likely to initiate cross-professional referrals.

The Trust believes that education is key to One Medicine. Only by learning about the similarities between humans and animals from the earliest stage to collaboration in the most advanced science and clinical practice will we promote change. Therefore, we must ensure that the best research, clinical practice and learning, benefiting both humans and animals, are accessible, funded, encouraged, and promoted.

A study published in 2017 by a group of scientists in The Netherlands noted that having a clear common goal (like One Medicine) can help to stimulate collaboration. The study also suggested that professional organizations could be important facilitators of collaboration in this area.

With this in mind, in 2020, the Trust launched the Humanimal Hub, a free online platform for all human and animal medical and veterinary professionals to meet, collaborate, share knowledge, and initiate research for the benefit of both humans and animals.

While still in its infancy, the Hub already has over 250 members. It provides a much-needed virtual space for connections to be made and conversations to be initiated, which the Trust actively seeks to nurture. For example, Anna Radford, a Consultant in Paediatric Surgery at Hull University NHS Trust and Leeds Children’s Hospital, was looking to collaborate with an individual or group in veterinary medicine with a specialty in problems with urinary tract or kidneys and/or antimicrobial resistance. Through the Hub, we were able to identify a suitable professional, and as a result, an interdisciplinary group has been set up to identify common urological conditions affecting both humans and companion animals.

Anna was also introduced to a diagnostics company working in the animal medical care field at the Trust’s inaugural global ‘One Medicine Symposium: Stronger Together’ in May 2021. Through them, Anna has set up a new collaboration to determine whether this diagnostic technology developed with companion animal medicine in mind could potentially also be useful to help diagnose urinary, joint, and cerebrospinal fluid infections in a busy NHS hospital setting.

These are just two examples of how we know that great things can happen when animal and human health professionals and scientists come together.

Which areas of medicine do you currently focus on, and what benefits does One Medicine provide to this particular area?

I believe One Medicine has transformative potential across all areas of medicine where physiological and genetic similarities exist between humans and animals. There are five main pillars of research that the Trust currently seeks to fund, namely infection control and antimicrobial resistance; cancer; bone and joint disease; brain and spinal disease; and regenerative medicine.

In line with this, the Trust began an important collaboration with the children’s charity Action Medical Research in 2020 to help support two child-focused medical research projects. The first study, led by Professor Hall-Scraggs at University College London, focuses on juvenile idiopathic arthritis (JIA). Patients with JIA have a disease that causes inflammation of their joints. This leads to pain, joint deformity, disability, and reduced quality of life. There are newer drugs now available that suppress joint inflammation, but these are expensive and can have side effects, the most serious being life-threatening infection. Magnetic resonance imaging (MRI) scans can show inflammation of joints. By measuring inflammation in patients with juvenile idiopathic arthritis, the study could help optimize their treatment by showing how much inflammation is present and whether it changes with treatment.

Image Credit: Amir Bajric/Shutterstock.com

Image Credit: Amir Bajric/Shutterstock.com

The second study, which is ongoing, is investigating infection prevention and its impact on antimicrobial resistance in critically ill children, led by Dr. Nazima Pathan, Lecturer in Paediatric Intensive Care at the University of Cambridge. The transferable data from both studies has real potential to help improve the lives of humans and animals with similar conditions.

Another example of research the Trust has funded concerns liquid biopsies for canine patients. This research was undertaken by Professor Joanna Morris and Dr. Tomoko Iwata at the University of Glasgow and is a great example of reciprocity whereby human and animal bladder cancer patients may benefit from this research.

Are there any particular examples of where either human or veterinary medicine has led to advances in the other?

Cancer research is perhaps the area for which One Medicine is most well-known. For example, dogs, long considered our best friends, don’t just share our lives but also risk factors for certain diseases. Many diseases also share genetic similarities between humans and dogs. Canine lymphoma, the second most common cancer in dogs, has relatively similar characteristics to human non-Hodgkin lymphoma. Around 1 in 8 golden retrievers will develop canine lymphoma, and CRUK estimates that 1 in 39 males and 1 in 51 females are at risk of being diagnosed with non-Hodgkin lymphoma. Both species need better, more effective ways to treat the disease, and clinical trials with canine veterinary patients have been helping to fast-track the development of new treatments in this area for several years.

Image Credit: Varvara Serebrova/Shutterstock.com

Image Credit: Varvara Serebrova/Shutterstock.com

 

The US-based DISCO initiative recognizes the value of aligning veterinary and human drug development projects and explains why it can be worthwhile to include veterinary patients at an early stage in cancer drug development trials. From shortening drug development times to encouraging cross-collaboration between the disciplines for the benefit of both human and veterinary patients, the potential advantages of this approach are clearly laid out in a landmark 2019 paper, which came about from a workshop of the World Small Animal Veterinary Association’s One Health committee.

What is the one thing you wish people knew about One Medicine?

 One Medicine is about human and animal healthcare advancing hand in hand, in an equitable and sustainable way, and not at the expense of an animal’s life.

How can people, both medical professionals and the general public, get involved with Humanimal Trust and support the One Medicine cause?

 Human and animal medical professionals, students, and researchers can join the Humanimal Hub for free and use it as an opportunity to collaborate, share knowledge, and initiate research with other like-minded individuals. The Trust also holds an annual One Medicine Day event that brings together researchers, doctors, vets, allied healthcare professionals, and students from around the world to discuss practical ways forward for One Medicine. The year’s ‘One Medicine Day Seminar: One Medicine in Action’ talks can be found here.

There are also opportunities to join our team as a volunteer Ambassador, write articles for us, present at events or act as a moderator for the Hub.

There are many ways that members of the public interested in One Medicine can get involved too, from signing The Humanimal Pledge or organizing a Paws for a Picnic fundraiser with family and friends to leaving a gift in your will or becoming a volunteer speaker in your local community.

What is next for yourself and Humanimal Trust?

We recognize the need to present One Medicine consistently through an education lens. Our absolute priority is to improve understanding at every level – from pre-school to professional training (veterinary and medical undergraduates) and development – of the relationship between human and animal health and the need for collaboration and reciprocity of benefit to humans and animals.

With this in mind, our focus for the next twelve months is on four key areas of activity:

  • Focused awareness building among key audiences
  • Developing partnerships, networks, and collaborations
  • Education
  • Research funding, engagement, and influencing activity

To help drive this, we have appointed a new CEO, Joe Bailey, who will be joining us in November from RSPCA Assured, together with a new Trustee, Anna Radford, whom I referred to earlier. I have no doubt that their understanding of and passion for our purpose will help take Humanimal Trust to the next level.

We are expanding our Science Committee, which will strengthen our ability to draw on the best available expertise to make better-informed decisions about which research activities we prioritize for funding or support. In addition, to support the strategic development of our educational program, we have created a new role – Schools Education Manager – which will enable us to initiate the long-term development of a One Medicine curriculum.

We will soon launch our new Podcast series, which I’m very excited about. This will follow the Trust’s previous series, Humanimal Connection, but with a very different feel to it, so watch this space.

Where can readers find more information?

Further details can be found on our website: www.humanimaltrust.org.uk

You can also email us at [email protected] and follow us on Facebook, Instagram, Twitter, and LinkedIn.

About Professor Roberto La Ragione, BSc (Hons) MSc Ph.D. FRSB CBiol FIBMS CSci AECVM FRCPath HonAssocRCVS

I am a Professor of Veterinary Microbiology and Pathology in the School of Veterinary Medicine and the Head of the School of Biosciences and Medicine at the University of Surrey. My role includes delivering and overseeing teaching and research in the School and running my own research group, which consists of vets, doctors, and scientists. My current research interests focus on Antimicrobial Resistance (AMR) and understanding the pathogenesis of zoonotic bacterial pathogens (those that can be transmitted from animals to humans and, in some cases, from humans to animals). I also have a particular interest in developing control and intervention strategies, including rapid diagnostics, vaccines and probiotics for controlling bacterial pathogens in companion and food-producing animals. I have published over 190 peer-reviewed papers in the area of microbiology and pathology.

https://www.news-medical.net/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js $(function() { Azom.wireUpVideoThumbnailLazyLoading(); });