Tag Archives: students

Experts find remnants of ancient RNA viruses embedded inside reef-building corals

An international team of marine biologists has discovered the remnants of ancient RNA viruses embedded in the DNA of symbiotic organisms living inside reef-building corals.

The RNA fragments are from viruses that infected the symbionts as long ago as 160 million years. The discovery is described in an open-access study published this week in the Nature journal Communications Biology, and it could help scientists understand how corals and their partners fight off viral infections today. But it was a surprising find because most RNA viruses are not known for embedding themselves in the DNA of organisms they infect.

The research showed that endogenous viral elements, or EVEs, appear widely in the genomes of coral symbionts. Known as dinoflagellates, the single-celled algae live inside corals and provide them with their dramatic colors. The EVE discovery underscores recent observations that viruses other than retroviruses can integrate fragments of their genetic code into their hosts’ genomes.

So why did it get in there? It could just be an accident, but people are starting to find that these ‘accidents’ are more frequent than scientists had previously believed, and they’ve been found across all kinds of hosts, from bats to ants to plants to algae.”

Adrienne Correa, Study Co-Author, Rice University

That an RNA virus appears at all in coral symbionts was also a surprise.

“This is what made this project so interesting to me,” said study lead author Alex Veglia, a graduate student in Correa’s research group. “There’s really no reason, based on what we know, for this virus to be in the symbionts’ genome.”

The study was supported by the Tara Ocean Foundation and the National Science Foundation and led by Correa, Veglia and two scientists from Oregon State University, postdoctoral scholar Kalia Bistolas and marine ecologist Rebecca Vega Thurber. The research provides clues that can help scientists better understand the ecological and economic impact of viruses on reef health.

The researchers did not find EVEs from RNA viruses in samples of filtered seawater or in the genomes of dinoflagellate-free stony corals, hydrocorals or jellyfish. But EVEs were pervasive in coral symbionts that were collected from dozens of coral reef sites, meaning the pathogenic viruses were -; and probably remain -; picky about their target hosts.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

“There’s a huge diversity of viruses on the planet,” said Correa, an assistant professor of biosciences. “Some we know a lot about, but most viruses haven’t been characterized. We might be able to detect them, but we don’t know who serves as their hosts.”

She said viruses, including retroviruses, have many ways to replicate by infecting hosts. “One reason our study is cool is because this RNA virus is not a retrovirus,” Correa said. “Given that, you wouldn’t expect it to integrate into host DNA.

“For quite a few years, we’ve seen a ton of viruses in coral colonies, but it’s been hard to tell for sure what they were infecting,” Correa said. “So this is likely the best, most concrete information we have for the actual host of a coral colony-associated virus. Now we can start asking why the symbiont keeps that DNA, or part of the genome. Why wasn’t it lost a long time ago?”

The discovery that the EVEs have been conserved for millions of years suggests they may somehow be beneficial to the coral symbionts and that there is some kind of mechanism that drives the genomic integration of the EVEs.

“There are a lot of avenues we can pursue next, like whether these elements are being used for antiviral mechanisms within dinoflagellates, and how they are likely to affect reef health, especially as oceans warm,” Veglia said.

“If we’re dealing with an increase in the temperature of seawater, is it more likely that Symbiodiniaceae species will contain this endogenous viral element? Does having EVEs in their genomes improve their odds of fighting off infections from contemporary RNA viruses?” he said.

“In another paper, we showed there was an increase in RNA viral infections when corals underwent thermal stress. So there are a lot of moving parts. And this is another good piece of that puzzle.”

Correa said, “We can’t assume that this virus has a negative effect. But at the same time, it does look like it’s becoming more productive under these temperature stress conditions.”

Thurber is the Emile F. Pernot Distinguished Professor in Oregon State’s Department of Microbiology.

Source:
Journal reference:

Veglia, A. J., et al. (2023). Endogenous viral elements reveal associations between a non-retroviral RNA virus and symbiotic dinoflagellate genomes. Communications Biology. doi.org/10.1038/s42003-023-04917-9.

Antiviral drugs may be a new treatment strategy in the fight against Candida auris

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

Antiviral drugs can make antifungals work again.

That, at its simplest, is the approach Mohamed Seleem’s lab at the Center for One Health Research has found may be a key treatment strategy in the battle against Candida auris, a frighteningly deadly fungal pathogen discovered in 2009 that is considered an urgent threat by the Centers for Disease Control and Prevention (CDC).

Candida auris, first discovered in Japan as an ear infection, has a staggering 60 percent mortality rate among those it infects, primarily people with compromised health in hospitals and nursing homes.

Recently, Seleem and Ph.D. students Yehia Elgammal and Ehab A. Salama published a paper in the American Society for Microbiology’s Antimicrobial Agents and Chemotherapy journal detailing the potential use of atazanavir, an HIV protease inhibitor drug, as a new avenue to improving the effectiveness of existing antifungals for those with a Candida auris infection.

A perfect storm of antimicrobial resistance, global warming and the COVID-19 pandemic has resulted in the rapid spread of Candida auris around the world, said Seleem, director of the center, a collaboration between the Virginia-Maryland College of Veterinary Medicine and the Edward Via College of Osteopathic Medicine.

We don’t have lots of drugs to use to treat fungal pathogens. We have only three classes of antifungal drugs. With a fungal pathogen, it’s often resistant to one class, but then we have two other options. What’s scary about Candida auris is it shows resistance to all three classes of the antifungal.

The CDC has a list of urgent threats, but on that list there is just one fungal pathogen, which is Candida auris. Because it’s urgent, we need to deal with it.”

Mohamed Seleem, the Tyler J. and Frances F. Young Chair in Bacteriology at Virginia Tech

Widespread use of fungicides in agriculture, in addition to the three classes of antifungal drugs used widely in medicine, has contributed to fungal pathogens developing more resistance, particularly Candida auris.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

Also, its rise has been linked to rising global temperatures and to easier spread through hospitals filled with COVID-19 patients in recent years during the global pandemic.

Atazanavir, an HIV protease inhibitor drug, has been found by Seleem’s lab to block the ability of Candida auris to excrete antifungals through its efflux pumps.

Think of a boat taking on water and hoses siphoning that water out of the boat to keep it afloat. Atazanavir stops up the hoses.

That allows the azole class of antifungal drugs to not be expelled as easily and perform better against Candida auris, the Seleem lab’s research has found.

The research on atazanavir builds on work three years ago by Seleem’s lab, then at Purdue University, finding potentially similar benefit in lopinavir, another HIV protease inhibitor.

HIV protease drugs are already in wide use among HIV patients, who can also be extra susceptible to Candida auris. Some HIV patients have likely been taking HIV protease drugs and azole-class antifungals in tandem for separate purposes, providing a potential source of already existing data that can be reviewed on whether those patients had Candida auris and what effects the emerging pathogen had on them.

Repurposing drugs already on the market for new uses can allow those treatments to reach widespread clinical use much more rapidly than would happen with the discovery of an entirely new drug, as existing drugs have already been tested and approved by the Food and Drug Administration and have years of further observation of effects in prescriptive use.

In 2022, the Center for One Health Research received a $1.9 million grant from the National Institutes of Health for the Seleem lab’s research on repurposing already approved drugs for treating gonorrhea.

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Source:

Novel gene-editing strategy harnesses an unusual protective ability to eliminate HIV-1 infection

Genetic alterations that give rise to a rare, fatal disorder known as MOGS-CDG paradoxically also protect cells against infection by viruses. Now, scientists at the Lewis Katz School of Medicine at Temple University have harnessed this unusual protective ability in a novel gene-editing strategy aimed at eliminating HIV-1 infection with no adverse effects on cell mortality.

The new approach, described online April 28 in the journal Molecular Therapy – Nucleic Acids, is based on a combination of two gene-editing constructs, one that targets HIV-1 DNA and one that targets a gene called MOGS – defects in which cause MOGS-CDG. In cells from persons infected with HIV-1, the Temple researchers show that disrupting the virus’s DNA while also deliberately altering MOGS blocks the production of infectious HIV-1 particles. The discovery opens up new avenues in the development of a cure for HIV/AIDS.

Proper MOGS function is essential for glycosylation, a process by which some cellular proteins synthesized in the body are modified to make them stable and functional. Glycosylation, however, is leveraged by certain kinds of infectious viruses. In particular, viruses like HIV, influenza, SARS-CoV-2, and hepatitis C, which are surrounded by a viral envelope, rely on glycosylated proteins to enter host cells.

In the new study, lead investigators Kamel Khalili, PhD, Laura H. Carnell Professor and Chair of the Department of Microbiology, Immunology, and Inflammation, Director of the Center for Neurovirology and Gene Editing, and Director of the Comprehensive NeuroAIDS Center at the Lewis Katz School of Medicine, and Rafal Kaminski, PhD, Assistant Professor at the Center for Neurovirology and Gene Editing at the Lewis Katz School of Medicine designed a genetic approach to exclusively turn on CRISPR to impede MOGS gene expression through DNA editing within immune cells that harbor replication competent, HIV-1. Their novel approach is expected to avoid any impact on the health of uninfected cells that retain normal MOGS gene function. Stimulation of the apparatus in HIV-1 infected cells disrupted the glycan structure of the HIV-1 envelope protein, culminating in the production of non-infectious virus particles.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

“This approach is conceptually very interesting,” said Dr. Khalili, who is also senior investigator on the new study. “By mitigating the ability of the virus to enter cells, which requires glycosylation, MOGS may offer another target, in addition to the integrated viral DNA for developing the next generation of CRISPR gene-editing technology for HIV elimination.”

Dr. Kaminski, Dr. Khalili, and Tricia H. Burdo, PhD, Professor and Vice Chair in the Department of Microbiology, Immunology, and Inflammation and the Center for Neurovirology and Gene Editing at Temple and an expert in the use of non-human primate models for HIV-1, have been working together to further assess the efficacy and safety of CRISPR-MOGS strategy in preclinical studies. In previous work, the team demonstrated that CRISPR-based technology can successfully remove viral DNA from the cells of infected non-human primates.

Other researchers who contributed to the study include Hong Liu, Chen Chen, Shuren Liao, and Shohreh Amini, Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University; Danielle K. Sohaii, Conrad R.Y. Cruz, and Catherine M. Bollard, Center for Cancer and Immunology Research, Children’s National Health System, The George Washington University; Thomas J. Cradick and Jennifer Gordon, Excision Biotherapeutics, San Francisco, CA; Anand Mehta, Stephane Grauzam, and James Dressman, Department of Cell and Molecular Pharmacology, Medical University of South Carolina; and Carlos Barrero and Magda Florez, Department of Pharmaceutical Sciences, School of Pharmacy, Temple University.

The research was supported in part by grants from the National Institutes of Health and the W.W. Smith Charitable Trust.

Source:
Journal reference:

Liu, H., et al. (2023) Strategic Self-Limiting Production of Infectious HIV Particles by CRISPR in Permissive Cells. Molecular Therapy — Nucleic Acids. doi.org/10.1016/j.omtn.2023.04.027.

Mouse study offers clues to developing an effective vaccine for Klebsiella bacteria

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

A mouse study at Washington University School of Medicine in St. Louis points to data that could be key to developing an effective vaccine for the bacterium Klebsiella pneumoniae. The bug is often resistant to antibiotics, making it difficult to treat in some.

In the U.S., the bacterium Klebsiella pneumoniae is a common cause of urinary tract infection, bloodstream infection and pneumonia. While infections with the bacterium can be easily treated in some, Klebsiella has a dangerous flip side: It also is frequently resistant to antibiotics, making it extraordinarily difficult to treat in others. About half of people infected with a hypervirulent, drug-resistant strain of the bacterium die.

Scientists are working on vaccines for Klebsiella, but the optimal vaccine design is still unknown. However, a new study in mice by scientists at Washington University School of Medicine in St. Louis and Omniose, a St. Louis startup company specializing in vaccine production, provides critical data that could be key to developing an effective vaccine for Klebsiella. The findings, published in PLoS Pathogens, are a step toward taming the superbug.

When you think about the bugs that can be resistant to almost all antibiotics — the scary superbugs in the news — a lot of them are strains of Klebsiella. For a long time, the bacterium wasn’t even a pressing issue. But now it is, due to an explosion in antibiotic-resistant Klebsiella. Our goal is to diminish Klebsiella’s superbug status by developing a vaccine before hypervirulent or resistant strains sicken and kill even more people.”

David A. Rosen, MD, PhD, study’s senior author, assistant professor of pediatrics and of molecular microbiology at Washington University

Hypervirulent Klebsiella strains have spread globally, often causing community-acquired infections.

In the U.S., Klebsiella infections primarily occur in health-care facilities where medically vulnerable patients are immunocompromised, require long courses of antibiotics to treat other conditions, have chronic diseases, or are elderly people or newborns. “But now we’re seeing the emergence of hypervirulent strains dangerous enough to cause serious disease or death among healthy people in the community,” Rosen said.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

Most concerning among scientists are the strains of Klebsiella impervious to carbapenems, a class of broad-spectrum antibiotics used to treat the most severe bacterial infections. For this reason, the World Health Organization and the U.S. Centers for Disease Control and Prevention have identified carbapenem-resistant Klebsiella as an urgent threat to public health.

The rod-shaped bacterium is immobile and, like chocolate-covered candies, encapsulated in sugar coatings. In the new study, researchers created two experimental vaccines based on two different sugars, or polysaccharides, on Klebsiella’s surface: the terminal sugars on lipopolysaccharide, called O-antigen, and a capsular polysaccharide, or K-antigen. Since sugars by themselves tend to produce weak immune responses, the researchers linked each of the sugars to a protein to boost the immune response, creating so-called conjugate vaccines. Sugar-protein conjugate vaccines have proven successful in combating several bacteria including Streptococcus pneumoniae, the most common cause of pneumonia. Historically, this connection between the sugar and protein carrier has been achieved using synthetic chemistry in a test tube; however, the vaccines created for this study are called bioconjugate vaccines, because the researchers connected the sugar to the protein all within an engineered bacteria system.

Once the vaccines were created, the researchers tested the experimental bioconjugate vaccines’ ability to protect mice from disease caused by Klebsiella.

“It turned out that the capsule vaccine was far superior to the O-antigen vaccine,” said the study’s first author, Paeton Wantuch, PhD, a postdoctoral associate in Rosen’s lab. “Mice that received the capsule vaccine were significantly more likely to survive Klebsiella infection in their lungs or their bloodstream than mice that received the O-antigen vaccine.”

Both vaccines elicited high levels of antibodies against their respective targets. But the antibodies against the O-antigen just weren’t as effective as the ones against the capsule. In some strains of Klebsiella, the O-antigen may be obscured by other sugars, so the antibodies that target the O-antigen cannot make contact with their target.

“Our findings suggest that we may also need to include the capsule-based antigens in vaccine formulations developed against Klebsiella,” Rosen said. “This is why it’s so important for us to continue studying antibody-antigen interactions in the different strains, with the goal of identifying the ideal vaccine composition for clinical trials soon. The need has never been more imperative, especially as Klebsiella’s drug-resistant, hypervirulent strains become stronger, bolder and more dangerous to human health.”

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Source:
Journal reference:

Wantuch, P. L., et al. (2023) Area-deprivation, social care spending and the rates of children in care proceedings in local authorities in Engl Capsular polysaccharide inhibits vaccine-induced O-antigen antibody binding and function across both classical and hypervirulent K2:O1 strains of Klebsiella pneumoniae. PLOS Pathogens. doi.org/10.1371/journal.ppat.1011367.

Novel computational platform can expand the pool of cancer immunotherapy targets

Researchers at Children’s Hospital of Philadelphia (CHOP) and the University of California, Los Angeles (UCLA) have developed a computational platform capable of discovering tumor antigens derived from alternative RNA splicing, expanding the pool of cancer immunotherapy targets. The tool, called “Isoform peptides from RNA splicing for Immunotherapy target Screening” (IRIS), was described in a paper published today in the Proceedings of the National Academy of Sciences.

Immunotherapy has revolutionized cancer treatment, but for many cancers including pediatric cancers, the repertoire of antigens is incomplete, underscoring a need to expand the inventory of actionable immunotherapy targets. We know that aberrant alternative RNA splicing is widespread in cancer and generates a range of potential immunotherapy targets. In our study, we were able to show that our computational platform was able to identify immunotherapy targets that arise from alternative splicing, introducing a broadly applicable framework for discovering novel cancer immunotherapy targets that arise from this process.”

Yi Xing, PhD, co-senior author, director of the Center for Computational and Genomic Medicine at CHOP

Cancer immunotherapy has ushered in a sea change in the treatment of many hematologic cancers, harnessing the power of a patient’s own immune system to fight the disease. Chimeric antigen receptor T-cell (CAR-T) and T cell receptor-engineered T cell (TCR-T) therapies modify a patient’s own T cells to attack known antigens on the surface of cancer cells and have often led to durable responses for cancers that were once considered incurable. However, the field has encountered challenges in the solid tumor space, in large part due to a lack of known and suitable targets for these cancers, highlighting the need for novel approaches to expand the pool of immunotherapy targets.

Alternative splicing is an essential process that allows for one gene to code for many gene products, based on where the RNA is cut and joined, or spliced, before being translated into proteins. However, the splicing process is dysregulated in cancer cells, which often take advantage of this process to produce proteins that promote growth and survival, allowing them to replicate uncontrollably and metastasize. This happens in many adult and pediatric cancers. Scientists have suggested splicing dysregulation could be a source of novel tumor antigens for immunotherapy, but identifying such antigens has been a challenge.

To address this difficulty, the researchers created IRIS to leverage large-scale tumor and normal RNA sequencing data and incorporate multiple screening approaches to discover tumor antigens that arise due to alternative splicing. Integrating RNA sequencing-based transcriptomics data and mass spectrometry-based proteomics data, the researchers showed that hundreds of IRIS-predicted TCR targets are presented by human leukocyte antigen (HLA) molecules, the part of the human immune system that presents antigens to T cells.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

The researchers then applied IRIS to RNA sequencing data from neuroendocrine prostate cancer (NEPC), a metastatic and highly lethal disease known to involve shifts in RNA splicing, as discovered in a prior study by CHOP and UCLA researchers. From 2,939 alternative splicing events enriched in NEPC, IRIS predicted 1,651 peptides as potential TCR targets. The researchers then applied a more stringent screening test, which prioritized 48 potential targets. Interestingly, the researchers found that these targets were highly enriched for peptides encoded by short sequences of less than 30 nucleotides in length – also known as “microexons” – which may arise from a unique program of splicing dysregulation in this type of cancer.

To validate the immunogenicity of these targets, the researchers isolated T cells reactive to IRIS-predicted targets, and then used single-cell sequencing to identify the TCR sequences. The researchers modified human peripheral blood mononuclear cells with seven TCRs and found they were highly reactive against targets predicted by IRIS to be good immunotherapy candidates. One TCR was particularly efficient at killing tumor cells expressing the target peptide of interest.

“Immunotherapy is a powerful tool that has had a significant impact on the treatment of some cancers, but the benefits have not been fully realized in many lethal cancers that could benefit from this approach,” said Owen N. Witte, MD, University Professor of Microbiology, Immunology, and Molecular Genetics and member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA. “The discovery of new antigenic targets that may be shared among different patients – and even different tumor types – could be instrumental in expanding the value of cell-based therapies. Analyzing massive amounts of data on tumor and normal tissues, which requires sophisticated computational tools like those developed by the Xing Lab, provides actionable insights on targets that one day could be tested in the clinic.”

“This proof-of-concept study demonstrates that alternatively spliced RNA transcripts are viable targets for cancer immunotherapy and provides a big data and multiomics-powered computational platform for finding these targets,” Dr. Xing added. “We are applying IRIS for target discovery across a wide range of pediatric and adult cancers. We are also developing a next-generation IRIS platform that harnesses newer transcriptomics technologies, such as long read and single cell analysis.”

This research was supported in part by the Immuno-Oncology Translational Network (IOTN) of the National Cancer Institute’s Cancer Moonshot Initiative, other National Institutes of Health funding, the Parker Institute for Cancer Immunotherapy, the Cancer Research Institute, and the Ressler Family Fund.

Source:
Journal reference:

Pan, Y., et al. (2023) IRIS: Discovery of cancer immunotherapy targets arising from pre-mRNA alternative splicing. PNAS. doi.org/10.1073/pnas.2221116120.

Swiss researchers identify plastic-degrading microbial strains in the Alps and Arctic region

Finding, cultivating, and bioengineering organisms that can digest plastic not only aids in the removal of pollution, but is now also big business. Several microorganisms that can do this have already been found, but when their enzymes that make this possible are applied at an industrial scale, they typically only work at temperatures above 30 °C. The heating required means that industrial applications remain costly to date, and aren’t carbon-neutral. But there is a possible solution to this problem: finding specialist cold-adapted microbes whose enzymes work at lower temperatures.

Scientists from the Swiss Federal Institute WSL knew where to look for such micro-organisms: at high altitudes in the Alps of their country, or in the polar regions. Their findings are published in Frontiers in Microbiology.

“Here we show that novel microbial taxa obtained from the ‘plastisphere’ of alpine and arctic soils were able to break down biodegradable plastics at 15 °C,” said first author Dr Joel Rüthi, currently a guest scientist at WSL. “These organisms could help to reduce the costs and environmental burden of an enzymatic recycling process for plastic.”

Rüthi and colleagues sampled 19 strains of bacteria and 15 of fungi growing on free-lying or intentionally buried plastic (kept in the ground for one year) in Greenland, Svalbard, and Switzerland. Most of the plastic litter from Svalbard had been collected during the Swiss Arctic Project 2018, where students did fieldwork to witness the effects of climate change at first hand. The soil from Switzerland had been collected on the summit of the Muot da Barba Peider (2,979 m) and in the valley Val Lavirun, both in the canton Graubünden.

The scientists let the isolated microbes grow as single-strain cultures in the laboratory in darkness and at 15 °C and used molecular techniques to identify them. The results showed that the bacterial strains belonged to 13 genera in the phyla Actinobacteria and Proteobacteria, and the fungi to 10 genera in the phyla Ascomycota and Mucoromycota.

Surprising results

They then used a suite of assays to screen each strain for its ability to digest sterile samples of non-biodegradable polyethylene (PE) and the biodegradable polyester-polyurethane (PUR) as well as two commercially available biodegradable mixtures of polybutylene adipate terephthalate (PBAT) and polylactic acid (PLA).

None of the strains were able to digest PE, even after 126 days of incubation on these plastics. But 19 (56%) of strains, including 11 fungi and eight bacteria, were able to digest PUR at 15 °C, while 14 fungi and three bacteria were able to digest the plastic mixtures of PBAT and PLA. Nuclear Magnetic Resonance (NMR) and a fluorescence-based assay confirmed that these strains were able to chop up the PBAT and PLA polymers into smaller molecules.

“It was very surprising to us that we found that a large fraction of the tested strains was able to degrade at least one of the tested plastics,” said Rüthi.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

The best performers were two uncharacterized fungal species in the genera Neodevriesia and Lachnellula: these were able to digest all of the tested plastics except PE. The results also showed that the ability to digest plastic depended on the culture medium for most strains, with each strain reacting differently to each of four media tested.

Side-effect of ability to digest plant polymers

How did the ability to digest plastic evolve? Since plastics have only been around since the 1950s, the ability to degrade plastic almost certainly wasn’t a trait originally targeted by natural selection.

Microbes have been shown to produce a wide variety of polymer-degrading enzymes involved in the break-down of plant cell walls. In particular, plant-pathogenic fungi are often reported to biodegrade polyesters, because of their ability to produce cutinases which target plastic polymers due their resemblance to the plant polymer cutin.”

Dr Beat Frey, Last Author, Senior Scientist and Group Leader, WSL

Challenges remain

Since Rüthi et al. only tested for digestion at 15 °C, they don’t yet know the optimum temperature at which the enzymes of the successful strains work.

“But we know that most of the tested strains can grow well between 4 °C and 20 °C with an optimum at around 15 °C,” said Frey.

“The next big challenge will be to identify the plastic-degrading enzymes produced by the microbial strains and to optimize the process to obtain large amounts of proteins. In addition, further modification of the enzymes might be needed to optimize properties such as protein stability”.

Source:
Journal reference:

de Freitas, A. S. et al. (2023). Amazonian dark earths enhance the establishment of tree species in forest ecological restoration. Frontiers in Soil Science. doi.org/10.3389/fsoil.2023.1161627.

Study identifies key genetic mechanism of drug resistance in the deadliest malaria parasites

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

An important genetic mechanism of drug resistance in one of the deadliest human malaria parasites has been identified in a new study published in Nature Microbiology.

A second key gene, pfaat1, responsible for encoding a protein that transports amino acids in the membrane of Plasmodium falciparum, is involved in its resistance to the major anti-malaria drug, chloroquine.

The findings may have implications for the ongoing battle against malaria, which infects an estimated 247 million people worldwide and kills more than 619,000 each year, most of which are young children.

Chloroquine is a major antimalaria drug, however in recent years, resistance has emerged in malaria parasites, first spreading through Southeast Asia and then through Africa in the 1970s and 1980s. Although alternative antimalarial drugs have been developed, resistance to chloroquine remains a big challenge.

Since its discovery in 2000, only one gene has been believed to have been responsible for resistance to chloroquine – the resistance transporter pfcrt which helps the malaria parasite transport the drug out of a key region in their cells, subsequently rendering it ineffective.

In this study, researchers from the Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene & Tropical Medicine (LSHTM) analysed more than 600 genomes of P. falciparum that were collected in The Gambia over a period of 30 years. The team found that mutant variants of  a second gene, pfaat1, which encodes an amino acid transporter, increased in frequency from undetectable to very high levels between 1984 and 2014. Importantly, their genome-wide population analyses also indicated long term co-selection on this gene alongside the previously-known resistance gene pfcrt.

In the laboratory, a further team of researchers including from Texas Biomed, University of Notre Dame and Seattle Children’s Research Institute found that replacing these mutations in parasite genomes using CRISPR gene-editing technology impacted drug resistance. A team from Nottingham University also found that these mutations could impact the function of pfaat1 in yeast, resulting in drug resistance.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

Complementary analysis of malaria genome datasets additionally suggested that parasites from Africa and Asia may carry different mutations in pfaat1 which could help explain differences in the evolution of drug resistance across these continents.

Alfred Amambua-Ngwa, Professor of Genetic Epidemiology at MRC Unit The Gambia at LSHTM said: “This is a very clear example of natural selection in action – these mutations were preferred and passed on with extremely high frequency in a very short amount of time, suggesting they provide a significant survival advantage.

“The mutations in pfaat1 very closely mirror the increase of pfcrt mutations. This, and other genetic analyses in the paper demonstrate that the transporter AAT1 has a major role in chloroquine resistance.”

Grappling with drug resistance, for malaria and other pathogens, requires taking a holistic approach to both drug development and pathogen surveillance. We must be aware that different genes and molecules will be working together to survive treatments. That is why looking at whole genomes and whole populations is so critical.”

David Conway, Professor of Biology, LSHTM

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Source:
Journal reference:

Amambua-Ngwa, A., et al. (2023). Chloroquine resistance evolution in Plasmodium falciparum is mediated by the putative amino acid transporter AAT1. Nature Microbiology. doi.org/10.1038/s41564-023-01377-z.

Discontinuing oral antibiotics after breast reconstruction does not lead to an increase in infections

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

For breast cancer patients undergoing breast reconstruction after mastectomy, avoiding postoperative oral antibiotics does not reduce the risk of infections, reports a study in the May issue of Plastic and Reconstructive Surgery®, the official medical journal of the American Society of Plastic Surgeons (ASPS). The journal is published in the Lippincott portfolio by Wolters Kluwer.

Our experience suggests that discontinuing routine oral antibiotic treatment after implant-based breast reconstruction does not lead to an increase in surgical site infections, and will eliminate a small but significant risk of allergy and other antibiotic-related complications.”

Mark Sisco, MD, ASPS Member Surgeon, NorthShore University HealthSystem, Evanston, Ill

No increase in infections after policy change on preventive antibiotics

A growing number of breast cancer patients are undergoing breast reconstruction after mastectomy, particularly immediate reconstruction using implants. Surgical site infections (SSIs) occur in 10% to 25% of patients undergoing this procedure, leading to increased rates of hospital readmission, repeat surgery, and reconstructive failure.

Historically, plastic surgeons have given extended antibiotic prophylaxis (EAP) to reduce the risk of SSI. The use of postoperative oral antibiotics has continued despite a lack of evidence for its effectiveness, and amid rising concerns about antibiotic resistance. In 2016, the authors’ health system joined the growing trend toward ending routine EAP for post-mastectomy breast reconstruction.

To evaluate the impact of this practice change, Dr. Sisco and colleagues compared outcomes in two groups of patients: 654 women (1,004 breasts) receiving EAP and 423 women (683 breasts) not receiving postoperative oral antibiotics. Both groups received a single dose of intravenous antibiotic before surgery.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

After surgery, the overall infection rate was similar between groups: 7.9% with EAP and 9.1% without EAP. After adjustment for differences in patient characteristics, the risk of SSIs was not significantly different between groups. This was even though patients in the non-EAP were more likely to receive some newer techniques – including nipple-sparing mastectomy and pre-pectoral (“above the muscle”) implant placement – thought to carry an increased risk of complications.

‘Thousands of women nationwide’ may have adverse reactions to EAP

Meanwhile, patients receiving EAP had some “infrequent but not insignificant” adverse events, including a two percent rate of moderate to severe allergic reactions. At least four women in the EAP group developed infection with antibiotic-resistant Clostridium difficile (“C-diff”) bacteria. Neither of these complications occurred in patients who did not receive extended antibiotics.

There was also evidence that EAP affected the types of bacteria isolated from patients who developed infections, including a higher rate of gram-negative bacteria. Extended antibiotic use was associated with a “broader range of pathogens” and more frequent need for second-line intravenous antibiotics.

“Although the use of EAP does not appear to worsen clinical outcomes, marked differences in the microbiology of associated infections may make them more difficult to treat,” Dr. Sisco and coauthors write. Especially at a time when breast reconstruction rates are rapidly increasing, “Our findings suggest that thousands of women are having adverse reactions to EAP nationwide, and some of these are likely to be serious,” the researchers add.

While acknowledging some important limitations of their study, the authors note that a definitive randomized trial of ending routine EAP is unlikely to be performed. Dr. Sisco and colleagues conclude, “We hope that our experience will give surgeons additional evidence and courage to change their practice.”

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Source:
Journal reference:

Sisco, M., et al. (2022). Oral antibiotics do not prevent infection or implant loss after immediate prosthetic breast reconstruction: Evidence from 683 consecutive reconstructions without prophylaxis. Plastic & Reconstructive Surgery. doi.org/10.1097/prs.0000000000010073

Infectious particles of the SARS-CoV-2 virus isolated from hospital air

if (g_displayableSlots.mobileTopLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-top-leaderboard’); });
}

Quebec scientists have succeeded in isolating infectious particles of the SARS-CoV-2 virus from air samples collected from hospital rooms of COVID-19 patients and kept frozen for more than a year, a new study shows.

The research was done by a team led by Nathalie Grandvaux, a researcher at the CHUM Research Centre (CRCHUM) and professor at Université de Montréal, in collaboration with the teams of Caroline Duchaine (Université Laval) and Yves Longtin (McGill University).

Published in Clinical Microbiology and Infection, the study provides insight into a scientific field that has been little explored since the beginning of the pandemic: airborne transmission of the virus causing COVID-19.

In our study, we show through an experimental model that it is possible to isolate and cultivate infectious viruses from air samples. This is possible even if samples were collected over a year ago then frozen and stored before cell culture.”

Nathalie Grandvaux, Researcher at the CHUM Research Centre (CRCHUM) and Professor at Université de Montréal

If public health authorities, including the World Health Organization, were slow to recognize airborne transmission of the virus, it is in part due to limited scientific evidence of the presence of infectious virus particles in aerosols.

“These studies are difficult to conduct,” said Nathalie Grandvaux, “because you need to preserve the infectivity of the virus during collection, use the right cell culture techniques and have access to a level 3 containment laboratory, like the laboratory at the CRCHUM.”

A unique method

Audray Fortin, a researcher on Nathalie Grandvaux’s team and the first author of the study, developed a unique cell culture method to amplify traces of viruses collected by Caroline Duchaine, a Canadian bioaerosol specialist, and her team.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

That was another scientific feat, requiring samplers-;a series of collection devices placed inside the rooms of patients with COVID-19-;that were used to maintain the virus infectivity and protect it during storage.

In all, 30 samples were collected during the study from 10 different rooms of patients with COVID-19, then stored frozen in a biobank for 14 months.

Using the aerosol samples from one patient’s room, the team of scientists was able to identify the presence of replicating virus particles.

“Thanks to our method, it is yet possible to retrospectively evaluate the presence of infectious SARS-CoV-2 in samples collected during the different waves of the pandemic,” said Nathalie Grandvaux. “This data will help us better understand the importance of airborne transmission of the virus and implement adapted preventive strategies.”

Better prepared for the next pandemic

The findings can be used to prepare for the next pandemic, be it SARS-CoV-2 or another respiratory virus, she added.

“Our research should increase awareness of airborne infectious viruses. It argues for the importance of targeting airborne transmission in personal and collective protection measures, including by improving indoor air quality.”

The collection and culture method can also be adapted to closed environments other than hospitals, such as schools, to test air quality and evaluate the effectiveness of protection measures against airborne transmission of viruses.

if (g_displayableSlots.mobileBottomLeaderboard) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-bottom-leaderboard’); });
}

Source:
Journal reference:

Fortin, A., et al. (2023). Detection of viable SARS-CoV-2 in retrospective analysis of aerosol samples collected from hospital rooms of patients with COVID-19. Clinical Microbiology and Infection. doi.org/10.1016/j.cmi.2023.03.019.

Genomic study reveals Babesia duncani’s pathogenicity and virulence

‘Tis the season for hiking now that spring has arrived and temperatures are on the upswing. But with hikes come insect bites and on the increase in North America is babesiosis, a malaria-like disease spread especially between May and October by a tick.

Indeed, recent research suggests an increase in the incidence of diseases transmitted by ticks around the world, not just the United States and Canada, due likely to climate change and other environmental factors. Among the tick-borne pathogens, Babesia parasites, which infect and destroy red blood cells, are considered a serious threat to humans and animals. All cases of human babesiosis reported in the United States have been linked to either Babesia microti, B. duncani, or a B. divergens-like species.

Now a research team led by scientists at the University of California, Riverside, and Yale University reports the first high-quality nuclear genome sequence and assembly of the pathogen B. duncani. The team also determined the 3D genome structure of this pathogen that resembles Plasmodium falciparum, the malaria-causing parasite.

“Our data analysis revealed that the parasite has evolved new classes of multigene families, allowing the parasite to avoid the host immune response,” said Karine Le Roch, a professor of molecular, cell and systems biology at UC Riverside, who co-led the study with Choukri Ben Mamoun, a professor of medicine at Yale University.

According to Le Roch, who directs the UCR Center for Infectious Disease Vector Research, the study, published today in Nature Microbiology, not only identifies the molecular mechanism most likely leading to the parasite’s pathogenicity and virulence, but also provides leads for the development of more effective therapies.

By mining the genome and developing in vitro drug efficacy studies, we identified excellent inhibitors of the development of this parasite -; a pipeline of small molecules, such as pyrimethamine, that could be developed as effective therapies for treating and better managing human babesiosis. Far more scientific and medical attention has been paid to B. microti. The genome structure of B. duncani, a neglected species until now, will provide scientists with important insights into the biology, evolution, and drug susceptibility of the pathogen.”

Karine Le Roch, professor of molecular, cell and systems biology at UC Riverside

Human babesiosis caused by Babesia duncani is an emerging infectious disease in the U.S. and is often undetected because healthy individuals do not usually show symptoms. It has, however, been associated with high parasite burden, severe pathology, and death in multiple cases. Despite the highly virulent properties of B. duncani, little was known about its biology, evolution, and mechanism of virulence, and recommended treatments for human babesiosis against B. duncani are largely ineffective.

A strong immune system is required to fight the pathogen. A compromised immune system could lead to flu-like illness. The tick that spreads babesiosis is mostly found in wooded or grassy areas and is the same tick that transmits bacteria responsible for Lyme disease. As a result, around 20% of patients with babesiosis are co-infected with Lyme disease.

if (g_displayableSlots.mobileMiddleMrec) {
pushDisplayAd(function() { googletag.display(‘div-gpt-mobile-middle-mrec’); });
}

B. duncani mostly infects deer, which serve as the reservoir host during the pathogen’s asexual development. The parasite’s sexual cycle occurs in the tick after the tick bites the infected deer. When this tick bites humans, infection begins. The full life cycle of Babesia parasites has not yet been determined. The tick that spreads babesiosis, called Dermacentor albipictus, lives longer than mosquitoes and could facilitate a long life cycle for B. duncani.

Even though scientists are discovering more Babesia species, diagnostics are mostly developed for B. microti. Le Roch is already working with Stefano Lonardi, a professor of computer science and engineering at UCR and co-first author of the study, on new Babesia strains that have evolved.

“The Babesia genomes are not very long,” said Lonardi, who assembled the B. duncani strain. “But they are challenging to assemble due to their highly repetitive content and can require years of research. Once the genome is assembled and annotated, it can provide valuable information, such as how the genes are organized, which genes are transcribed during infection, and how the pathogen avoids the host’s immune system.”

In older and immunocompromised people, if B. duncani is left unattended, babesiosis could worsen and lead to death. Once the pathogen enters the body and red blood cells start to get destroyed, fever, headache, and nausea can follow. People who get bitten by the ticks often don’t feel the bite, which complicates diagnosis. Skin manifestations of babesiosis are rare, Lonardi said, and difficult to separate from Lyme disease.

Le Roch and Lonardi urge people to be mindful of ticks when they go hiking.

“Check yourself for tick bites,” Le Roch said. “When you see your physician don’t forget to let them know you go hiking. Most physicians are aware of Lyme disease but not of babesiosis.”

Next the team plans to study how B. duncani survives in the tick and find novel vector control strategies to kill the parasite in the tick.

Le Roch, Mamoun, and Lonardi were joined in the study by colleagues at UCR, Yale School of Medicine, Université de Montpellier (France), Instituto de Salud Carlos III (Spain), Universidad Nacional Autónoma de México, and University of Pennsylvania. Pallavi Singh at Yale and Lonardi contributed equally to the study. The B. duncani genome, epigenome, and transcriptome were sequenced at UCR and Yale.

The study was supported by grants from the National Institutes of Health, Steven and Alexandra Cohen Foundation, Global Lyme Alliance, National Science Foundation, UCR, and Health Institute Carlos III.

Source:
Journal reference:

Singh, P., et al. (2023). Babesia duncani multi-omics identifies virulence factors and drug targets. Nature Microbiology. doi.org/10.1038/s41564-023-01360-8.