Tag Archives: Efficacy

Low-cost, universal oral COVID-19 vaccine prevents severe respiratory illness in hamsters

A UCLA-led team has developed an inexpensive, universal oral COVID-19 vaccine that prevented severe respiratory illness and weight loss when tested in hamsters, which are naturally susceptible to SARS-CoV-2. It proved as effective as vaccines administered by injection or intranasally in the research.

If ultimately approved for human use, it could be a weapon against all COVID-19 variants and boost uptake, particularly in low- and middle-income countries, and among those with an aversion to needles.

The study is published in the peer-reviewed journal Microbiology Spectrum.

The oral vaccine is based primarily on the nucleocapsid protein, which is the most abundantly expressed of the virus’s four major structural proteins and evolves at a much slower rate than the frequently mutating spike protein. The vaccine utilizes a highly weakened bacterium to produce the nucleocapsid protein in infected cells as well as the membrane protein, which is another highly abundant viral structural protein.

Being a universal vaccine based primarily upon the nucleocapsid protein, the vaccine is resistant to the incessant mutations of the SARS-CoV-2 spike protein upon which virtually all current vaccines are based. As a result, current vaccines rapidly become obsolete, requiring that they repeatedly be re-engineered. Hence, our vaccine should protect against new and emerging variants of SARS-CoV-2.”

Dr. Marcus Horwitz, senior author, distinguished professor of medicine in the Division of Infectious Diseases and of microbiology, immunology and molecular genetics at the David Geffen School of Medicine at UCLA

Oral delivery also makes it easier to distribute the vaccine in resource poor areas of the world by eliminating the need for needles, syringes, and trained personnel to deliver injectable vaccines, he added. “An oral vaccine may also be attractive to many people with vaccine hesitancy on account of fear of needles.”

The researchers noted that while it worked exceptionally well in preventing severe respiratory illness, it did not provide full protection against high viral loads in the hamsters. Also, they did not test it against the Omicron strain, which contains a nearly identical nucleocapsid protein, because of this strain’s low virulence in the golden Syrian hamsters they used.

But the vaccine, they write, “is efficacious when administered via the oral route against COVID-19-like disease in a highly demanding animal model. This conveniently administered, easily manufactured, inexpensive, and readily stored and transported vaccine could play a major role in ending the COVID-19 pandemic by protecting immunized individuals from serious disease from current and future strains of SARS-CoV-2.”

The next step in the process will be to manufacture the vaccine for oral administration via an acid-resistant enteric capsule that will allow the vaccine to be safely released in the small intestine, Horwitz said. It will then be tested for safety, immunogenicity, and efficacy in humans.

“We also plan to expand the vaccine to protect against infections caused by other types of potentially pandemic coronaviruses such as the virus that causes Middle Eastern Respiratory Syndrome (MERS),” he added.

Additional authors are Qingmei Jia and Saša Masleša-Galić of UCLA; Helle Bielefeldt-Ohmann of the University of Queensland, Australia; and Rachel Maison, Airn Hartwig, and Richard Bowen of Colorado State University.

This study was supported by a Corona Virus Seed grant from the UCLA AIDS Institute and Charity Treks and by the National Institutes of Health (AI141390).

Source:
Journal reference:

Jia, Q., et al. (2023). Oral Administration of Universal Bacterium-Vectored Nucleocapsid-Expressing COVID-19 Vaccine is Efficacious in Hamsters. Microbiology Spectrum. doi.org/10.1128/spectrum.05035-22.

Leaving lymph nodes intact until after immunotherapy could boost efficacy against solid tumors

Cancer treatment routinely involves taking out lymph nodes near the tumor in case they contain metastatic cancer cells. But new findings from a clinical trial by researchers at UC San Francisco and Gladstone Institutes shows that immunotherapy can activate tumor-fighting T cells in nearby lymph nodes.

The study, published March 16, 2023 in Cell, suggests that leaving lymph nodes intact until after immunotherapy could boost efficacy against solid tumors, only a small fraction of which currently respond to these newer types of treatments.

Most immunotherapies are aimed only at reinvigorating T cells in the tumor, where they often become exhausted battling the tumor’s cancer cells. But the new research shows that allowing the treatment to activate the immune response of the lymph nodes as well can play an important role in driving positive response to immunotherapy.

This work really changes our thinking about the importance of keeping lymph nodes in the body during treatment.”

Matt Spitzer, PhD, investigator for the Parker Institute for Cancer Immunotherapy and Gladstone-UCSF Institute of Genomic Immunology and senior author of the study

Lymph nodes are often removed because they are typically the first place metastatic cancer cells appear, and without surgery, it can be difficult to determine whether the nodes contain metastases.

“Immunotherapy is designed to jump start the immune response, but when we take out nearby lymph nodes before treatment, we’re essentially removing the key locations where T cells live and can be activated,” Spitzer said, noting that the evidence supporting the removal of lymph nodes is from older studies that predate the use of today’s immunotherapies.

Aim for the lymph nodes, not the tumor

Researchers have largely been working under the assumption that cancer immunotherapy works by stimulating the immune cells within the tumor, Spitzer said. But in a 2017 study in mice, Spitzer showed that immunotherapy drugs are actually activating the lymph nodes.

“That study changed our understanding of how these therapies might be working,” said Spitzer. Rather than the immunotherapy pumping up the T cells in the tumor, he said, T cells in the lymph nodes are likely the source for T cells circulating in the blood. Such circulating cells can then go into the tumor and kill off the cancer cells.

Having shown that intact lymph nodes can temper cancer’s hold in mice, Spitzer’s team wanted to know whether the same would prove true in human patients. They chose to design a trial for patients with head and neck cancers because of the high number of lymph nodes in those areas.

The trial enrolled 12 patients whose tumors hadn’t yet metastasized past the lymph nodes. Typically, such patients would undergo surgery to remove the tumor, followed by other treatments if recommended.

Instead, patients received a single cycle of an immunotherapy drug called atezolizumab (anti-PD-L1) that is produced by Genentech, a sponsor of the trial. A week or two later, Spitzer’s team measured how much the treatment activated the patients’ immune systems.

The treatment also included surgically removing each patient’s tumor and nearby lymph nodes after immunotherapy and analyzing how the immunotherapy affected them.

The team found that, after immunotherapy, the cancer-killing T cells in the lymph nodes began springing into action. They also found higher numbers of related immune cells in the patients’ blood.

Spitzer attributes some of the trial’s success to its design, which allowed the team to get a lot of information from a small number of patients by looking at the tissue before and after surgery and running detailed analyses.

“Being able to collect the tissue from surgery shortly after the patients had been given the drug was a really unique opportunity,” he said. “We were able to see, at the cellular level, what the drug was doing to the immune response.”

That kind of insight would be challenging to get from a more traditional trial in patients with later-stage disease, who would not typically benefit from undergoing surgery after immunotherapy.

Metastases inhibit immune response

Another benefit of the study design was that it allowed researchers to compare how the treatment affected lymph nodes with and without metastases, or a second cancer growth.

“No one had looked at metastatic lymph nodes in this way before,” said Spitzer. “We could see that the metastases impaired the immune response relative to what we saw in the healthy lymph nodes.”

It could be that the T cells in these metastatic nodes were less activated by the therapy, Spitzer said. If so, that could explain, in part, the poor performance of some immunotherapy treatments.

Still, the therapy prompted enough T-cell activity in the metastatic lymph nodes to consider leaving them in for a short period of time until treatment ends. “Removing lymph nodes with metastatic cancer cells is probably still important but taking them out before immunotherapy treatment may be throwing the baby out with the bathwater,” said Spitzer.

A subsequent goal of the current trial is to determine whether giving immunotherapy before surgery protects against the recurrence of tumors in the future. Researchers won’t know the answer to that until they’ve had a chance to monitor the participants for several years.

“My hope is that if we can activate a good immune response before the tumor is taken out, all those T cells will stay in the body and recognize cancer cells if they come back,” Spitzer said.

Next, the team plans to study better treatments for patients with metastatic lymph nodes, using drugs that would be more effective at reactivating their immune responses.

Source:
Journal reference:

Rahim, M. K., et al. (2023). Dynamic CD8+ T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes. Cell. doi.org/10.1016/j.cell.2023.02.021

Real-world data on the effectiveness of Sotrovimab as a prophylactic against COVID-19

*Important notice: medRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

In a recent study posted in the medRxiv* preprint server, scientists assessed the efficacy of sotrovimab for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) treatment.

Emerging SARS-CoV-2 variants have lowered the fold change in half maximal effective concentration (EC50) for the SARS-CoV-2 Omicron BA.2 sublineage and subsequent sublineages. Yet, the association between this decrease and clinical efficacy outcomes is unknown. With a lack of clinical trials evaluating the efficacy of sotrovimab against novel variants, real-world evidence becomes an essential data source.

Study: Real-world effectiveness of sotrovimab for the treatment of SARS-CoV-2 infection during Omicron BA.2 subvariant predominance: a systematic literature review. Image Credit: Cryptographer / ShutterstockStudy: Real-world effectiveness of sotrovimab for the treatment of SARS-CoV-2 infection during Omicron BA.2 subvariant predominance: a systematic literature review. Image Credit: Cryptographer / Shutterstock

About the study

In the present study, researchers assessed the efficacy of sotrovimab on severe coronavirus disease 2019 (COVID-19) outcomes throughout the period of the prevalence of the SARS-CoV-2 Omicron BA.2 subvariant.

This systematic literature review (SLR) comprised observational papers assessing clinical outcomes as well as the viral load in sotrovimab-treated patients, which were published between 1 January 2022 and 3 November 2022 in preprint articles, peer-reviewed journal publications, and conference abstracts. To identify data related to Omicron BA.2 and the following subvariants, the team chose a suitable publication period for the systematic review.

The following electronic databases were searched on 3 November 2022: MEDLINE, LitCovid, Embase, EcoLit, and Cochrane COVID-19 Study Registry. Further searches were undertaken in medRvix, bioRvix, arRvix, xhemRvix, Preprints.org, SSRN, and ResearchSquare for relevant preprints. In addition, relevant abstracts from the following conferences were indexed beginning in January 2022: Infectious Diseases Week, International Conference on Emerging Infectious Diseases, European Respiratory Society, and European Congress of Clinical Microbiology and Infectious Diseases.

Data extraction from the listed studies was conducted by a single extractor using a Microsoft Excel-designed data extraction file. Information extracted included the study’s title and citation, data source, study design and details, country, number of patients, study population, data collection period and circulating SARS-CoV-2 variants, duration of follow-up, key baseline features, and clinical outcomes. The clinical outcomes taken into account for the study included hospital admission, intensive care admission, respiratory support, emergency department visits, mortality, COVID-19 progression, the relative and absolute change in viral load observed during the acute phase after sotrovimab therapy, and the number of patients having undetectable viral load after sotrovimab treatment.

Results

Initial searches of electronic databases generated 257 studies. Another 263 studies were found by searching preprints, conference abstracts, and citation chasing from appropriate SLRs. After removing duplicates, 343 unique abstracts and titles were evaluated, of which 89 were deemed eligible for full-text review. Five observational trials reporting viral load or clinical outcome data associated with sotrovimab during the era of BA.2 predominance were deemed appropriate for inclusion in the present SLR.

Point estimates for hospitalization or mortality (as a composite endpoint) or clinical progression for sotrovimab-treated patients. a95 CIs calculated via Clopper-Pearson methods using reported data. bDefined as March through April 2022 in source and assumes homogeneity in the distribution of SARS-CoV-2 variants across all US states. cOnly COVID-19-specific outcome shown; all-cause outcome also reported in source. dHospitalizations were COVID-19-specific; deaths could be due to any cause. CI confidence interval

Point estimates for hospitalization or mortality (as a composite endpoint) or clinical progression for sotrovimab-treated patients. a95 CIs calculated via Clopper-Pearson methods using reported data. bDefined as March through April 2022 in source and assumes homogeneity in the distribution of SARS-CoV-2 variants across all US states. cOnly COVID-19-specific outcome shown; all-cause outcome also reported in source. dHospitalizations were COVID-19-specific; deaths could be due to any cause. CI confidence interval

The number of patients reporting hospitalization or fatality due to COVID-19 was consistently low for all investigations and periods of the prevalence of Omicron BA.1 and BA.2 variants. COVID-19-related hospital admission or mortality rates were between 1.0% and 3.1% for sotrovimab-treated patients during Omicron BA.1 prevalence and from 1.0% and 3.6% when BA.2 was predominant. The number of patients who reported hospitalization and mortality due to all causes ranged from 2.1% to 2.7% for the BA.1 predominance era, and from 1.7% to 2.0% for the BA.2 era. During Omicron BA.1 predominance, COVID-19-related mortality was projected to be 0.21% for the sotrovimab group versus 0.67% for the molnupiravir group, and 0.15% versus 0.96% for the BA.2 era, respectively.

During the BA.1 and BA.2 subvariant surges, sotrovimab was associated with a significantly decreased incidence of 28-day SARS-CoV-2-related hospital admission or fatality compared to molnupiravir. After statistical adjustment for demographics, vaccination status, high-risk cohort categories, body mass index, calendar time, and other comorbidities, the findings indicated that sotrovimab was associated with a significantly lower risk of COVID-19-related hospital admission or mortality compared to molnupiravir during the BA.1 and BA.2 periods.

During the BA.2 subvariant surge, sotrovimab was linked with a decreased risk of 30-day hospitalization or mortality from all causes compared to no mAb treatment. In March 2022, sotrovimab was considerably more successful than non-mAb-treated patients, with an adjusted reduction of 59% in relative risk and a propensity score-matched relative risk reduction of 64% with respect to 30-day all-cause hospital admission or mortality. Similar risks of hospitalization were associated with BA.1 and BA.2 patients treated with sotrovimab.

Conclusion

The study findings showed that sotrovimab continued to be clinically effective in mitigating severe clinical outcomes associated with SARS-CoV-2 infections during the period of SARS-CoV-2 Omicron BA.2 predominance compared to the control/comparator and relative to Omicron BA.1 predominance. During Omicron BA.1 and BA.2 subvariant predominance, the studies consistently reported low rates of poor clinical outcomes in individuals treated with sotrovimab.

*Important notice: medRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Journal reference:

Healthy gut bacteria can travel to other parts of the body and boost antitumor immunity

Researchers at UT Southwestern Medical Center have discovered how healthy bacteria can escape the intestine, travel to lymph nodes and cancerous tumors elsewhere in the body, and boost the effectiveness of certain immunotherapy drugs. The findings, published in Science Immunology, shed light on why antibiotics can weaken the effect of immunotherapies and could lead to new cancer treatments.

Scientists have been stumped as to how bacteria inside your gut can have an impact on a cancer in your lungs, breasts, or skin. Now we understand that mechanism much better and, in the future, hope to use this knowledge to better fight cancer.”

Andrew Y. Koh, M.D., Associate Professor of Pediatrics, Microbiology, and in the Harold C. Simmons Comprehensive Cancer Center at UT Southwestern

Previous studies, including one led by Dr. Koh at UT Southwestern, have shown an association between the composition of gut microbiomes – the microorganisms found inside the digestive tract – and the effectiveness of cancer treatments that target the immune system, including pembrolizumab (Keytruda) and ipilimumab (Yervoy). However, researchers have reached conflicting conclusions about the ideal balance of microorganisms to optimize therapy, with studies pointing to different beneficial bacteria.

Dr. Koh and colleagues used mice with melanoma tumors to probe how the drugs, called immune checkpoint inhibitors, affected the movement of gut microbes through the body. They found that immune checkpoint inhibitors, which boost the activity of the immune system against tumors, also cause inflammation in the digestive system that leads to remodeling of lymph nodes in the gut.

Due to these changes, bacteria can leave the intestines and travel to lymph nodes near the tumor and the tumor itself, the researchers found. Here, the microbes activate a set of immune cells that act to kill tumor cells.

“Immune checkpoint inhibitors work by releasing the brakes on the immune system to target cancer,” said Dr. Koh, who is also Director of the Cellular and ImmunoTherapeutics Program at UTSW and Children’s Health. “What we think is that these microorganisms and the immune cells they’re activating are essentially pressing on the accelerator of the immune system at the same time.”

The findings suggest that a course of antibiotics, which can eliminate most gut microbes, is detrimental to immune checkpoint inhibitors because the bacteria can no longer play this role of immune accelerant. It also helps explain why researchers have found many types of bacteria in patient microbiomes that seem to be beneficial for treatment.

“As long as a subset of beneficial bacteria can translocate from the gut to the lymph node or tumor, it may not matter exactly which bacteria it is,” said Dr. Koh.

Dr. Koh’s team is now working toward the development of bacterial-based treatments to boost the efficacy of immune checkpoint inhibitors.

Other UTSW researchers who contributed to the study include first author and UTSW graduate student Yongbin Choi, Lora Hooper, Jake Lichterman, Laura Coughlin, Nicole Poulides, Wenling Li, Priscilla Del Valle, Suzette Palmer, Shuheng Gan, Jiwoong Kim, Xiaowei Zhan, Yajing Gao, and Bret Evers.

Dr. Hooper, a Howard Hughes Medical Institute Investigator, holds the Jonathan W. Uhr, M.D. Distinguished Chair in Immunology and is a Nancy Cain and Jeffrey A. Marcus Scholar in Medical Research, in honor of Dr. Bill S. Vowell.

The research was supported by funding from the National Institutes of Health (R01 CA231303, K24 AI123163, R01 DK070855), the Crow Family Fund, the UT Southwestern Medical Center and Children’s Health Cellular and ImmunoTherapeutics Program, National Research Service Award-Integrative Immunology Training Grant (5T32AI005284-43), The Welch Foundation (I-1874), and the Howard Hughes Medical Institute.

Source:
Journal reference:

Choi, Y., et al. (2023) Immune checkpoint blockade induces gut microbiota translocation that augments extraintestinal antitumor immunity. Science Immunology. doi.org/10.1126/sciimmunol.abo2003.

Clinical trial shows safety and immunogenicity of temperature-stable experimental TB vaccine

A clinical trial testing a freeze-dried, temperature-stable experimental tuberculosis (TB) vaccine in healthy adults found that it was safe and stimulated both antibodies and responses from the cellular arm of the immune system. The Phase 1 trial was supported by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. A non-temperature stable form of the candidate previously had been tested in several clinical trials. However, this was the first clinical trial of any subunit TB vaccine candidate in a temperature-stable (thermostable) form. Results are published in Nature Communications.

The experimental vaccine, ID93+GLA-SE, was developed by Christopher B. Fox, Ph.D., and scientists at the Access to Advanced Health Institute (formerly the Infectious Disease Research Institute) in Seattle. It is a recombinant subunit vaccine made from four proteins of Mycobacterium tuberculosis bacteria combined with GLA-SE, an immune-stimulating adjuvant. The freeze-dried formulation does not require refrigeration and is mixed with sterile water just prior to injection. Thermostable vaccines are desirable in settings where maintaining cold or frozen vaccines for long periods can be costly and difficult.

The current trial investigated whether administering temperature-stable vaccine containing both ID93 and GLA-SE in a single vial would be as effective at inducing an immune response as a regimen in which non-thermostable ID93 and liquid GLA-SE are held in two vials and combined prior to injection. A single-vial presentation of a thermostable vaccine would have clear advantages in ease of storage, transport and administration, the investigators note.

Daniel F. Hoft, M.D., Ph.D., director of the Saint Louis University Center for Vaccine Development, led the single-site trial at the university’s School of Medicine. Twenty-three participants received the thermostable single-vial regimen, while 22 participants received the two-vial, non-thermostable regimen. Both vaccine presentations were safe and well-tolerated. Recipients of the single-vialled thermostable vaccine had robust T-cell responses and produced higher levels of antibodies in the blood than those receiving the non-thermostable two-vial presentation.

The investigators note some limitations in this small trial. For example, no established correlates of protection define what immune responses are required for vaccine-induced protection from TB disease. Therefore, it is not possible to say whether the enhanced immune responses seen in the thermostable vaccine formulation would translate to improved protective vaccine efficacy. Nevertheless, they conclude, results of this trial demonstrate “a proof-of-concept that adjuvant-containing vaccines can be formulated in a freeze-dried single-vial presentation without detrimentally impacting clinical immunogenicity or safety characteristics.”

Source:
Journal reference:

Sagawa, Z.K., et al. (2023) Safety and immunogenicity of a thermostable formulation of the ID93 + GLA-SE tuberculosis vaccine candidate in healthy adults. Nature Communications. doi.org/10.1038/s41467-023-36789-2.

New analysis shows how convalescent plasma can be used as effective, low-cost COVID-19 treatment

Three years into the COVID-19 pandemic, new variant outbreaks continue to fuel economic disruptions and hospitalizations across the globe. Effective therapies remain unavailable in much of the world, and circulating variants have rendered monoclonal antibody treatments ineffective. But a new analysis shows how convalescent plasma can be used as an effective and low-cost treatment both during the COVID-19 pandemic and in the inevitable pandemics of the future.

In astudy published in Clinical Infectious Diseases, an international team of researchers analyzed clinical data and concluded that among outpatients with COVID-19, antibodies to SARS-CoV-2 given early and in high dose reduced the risk of hospitalization.

If the results of this meta-analysis had somehow been available in March of 2020, then I am certain that millions of lives would have been saved around the world.”

Dr. Adam C. Levine, study author, professor of emergency medicine at Brown University’s Warren Alpert Medical School

While several other early treatments for COVID-19 have had similar results, including antivirals like Paxlovid and monoclonal antibodies, only convalescent plasma, the researchers concluded, is likely to be both available and affordable for the majority of the world’s population both now and early in the next viral pandemic.

“These findings will be helpful for this pandemic, especially in places like China, India and other parts of the world that lack access to antiviral medications like Paxlovid,” Levine said. “And because it provides information on how to more effectively use convalescent plasma as a therapy, this will be even more helpful in the next pandemic. This study is essentially a roadmap for how to do this right the next time.”

Blood plasma from people who have recovered from COVID-19 and contains antibodies against SARS-CoV-2 was used as a treatment early in the pandemic, Levine said -; months before monoclonal antibody treatment or vaccines became available, and more than a year before an effective oral drug therapy was clinically available.

Although convalescent plasma seemed promising, outpatient research was limited, and studies that did exist showed mixed results. One problem was that most studies were conducted in patients already hospitalized with COVID-19, Levine said, largely due to the convenience of conducting research with this population. The objective in the new study was to review all available randomized controlled trials of convalescent plasma in non-hospitalized adults with COVID-19 to determine whether early treatment can reduce the risk of hospitalization.

The analysis included data from five studies conducted in four countries, including Argentina, the Netherlands, Spain, and two in the United States. Levine previously supervised enrollment at Rhode Island Hospital in a clinical trial led by Johns Hopkins Medicine and Johns Hopkins Bloomberg School of Public Health. Across the five studies, a total of 2,620 adult patients had received transfusions of convalescent plasma from January 2020 to September 2022. The researchers conducted an individual participant data meta-analysis to assess how the transfusion timing and dose impacted the patient’s risk of hospitalization during the 28 days after infection.

In their analysis, the researchers found that 160 (12.2%) of 1,315 control patients were hospitalized compared with 111 (8.5%) of 1,305 patients treated with COVID-19 convalescent plasma -; 30% fewer hospitalizations.

Notably, the strongest effects were seen in patients treated both early in the illness and with plasma with high levels of antibodies. In these patients, the reduction in hospitalization was over 50%.

For future pandemics, the goal is to use plasma from donors who have high levels of antibodies, said corresponding study author Dr. David J. Sullivan, a professor of molecular microbiology and immunology at Johns Hopkins Bloomberg School of Public Health and School of Medicine. “This research suggests that we have been underdosing convalescent plasma for many previous pathogens, which impacts effectiveness,” Sullivan said. “It bears repeating: Early and high levels of antibodies increased the beneficial efficacy.”

Levine explained that because convalescent plasma was the only treatment available at the beginning of the pandemic, it was used widely -; and often incorrectly, on hospitalized patients who were already experiencing severe symptoms late in the course of COVID-19. Those symptoms were due to a ramped-up immune response to the virus, not the virus itself, Levine explained.

“By the time the patient was at the point where they’d reached the inflammatory phase that caused severe symptoms, it was too late for treatments like convalescent plasma or even monoclonal antibodies to work,” he said.

What is now known is that convalescent plasma works best when given early in the course of illness. That’s when it can neutralize the virus and get ahead of the body mounting an intense immune response, thereby preventing hospitalization and death, Levine said.

The five drug treatment trials in the analysis took place at a variety of global health care sites, he noted, including nursing homes, outpatient clinics and emergency departments. The diversity across the studies is a sign that the data is likely generalizable to many other types of populations and settings around the world, said Levine, who also directs the Center for Human Rights and Humanitarian Studies at the Watson Institute for International and Public Affairs at Brown.

Levine cited another recently published study in JAMA Network Open that showed that convalescent plasma is effective in reducing mortality in immunocompromised patients. This new meta-analysis provides evidence that convalescent plasma can also be effective in the larger population of adults who are not immunocompromised.

The U.S. Food and Drug Administration allowed early convalescent plasma use in December 2021 for those patients with COVID-19 who were also immunocompromised, but not yet for patients with COVID-19 who are not immunocompromised. The authors said they hope the new study will push the FDA, and other countries around the world, to make early treatment with COVID-19 convalescent plasma available to a much larger group of patients at risk for hospitalization.

A treatment that evolves with the pandemic

The findings come at a time when monoclonal antibodies, the most commonly used treatment for COVID-19, have been shown to be ineffective against new variants of the virus. In November, the FDA revoked emergency authorization of the last monoclonal antibody treatment because it wasn’t expected to have much of an effect against Omicron sub-variants.

In contrast to monoclonal antibody therapies, Levine said, convalescent plasma donated by patients who have recovered from the virus is a treatment that evolves with the pandemic. Because it has antibodies that attach to multiple different parts of the virus, there are still opportunities to attach to a receptor even after the virus mutates and morphs some of its receptors. It’s also less expensive to produce than pharmaceutical antivirals.

In the first year of the pandemic, Levine said, before the development of vaccines and effective treatments, researchers tried many treatment strategies in order to quickly find something that worked to save lives.

“When the next big pandemic hits, we’re going to be in a very similar situation,” Levine said. “Yet at least next time, we’ll have research like this to inform our strategy.”

Source:
Journal reference:

Levine, A.C., et al. (2023) COVID-19 Convalescent Plasma Outpatient Therapy to Prevent Outpatient Hospitalization: A Meta-analysis of Individual Participant Data From Five Randomized Trials. Clinical Infectious Diseases. doi.org/10.1093/cid/ciad088.

Researchers find a way to block anaphylaxis caused by peanut allergies

Researchers from Indiana University School of Medicine have found a way to block anaphylaxis caused by peanut allergies. The groundbreaking discovery could lead to life-saving therapeutics for people with severe peanut allergies.

There are treatments for symptoms in patients with food allergies, but few preventive therapies other than strict dietary avoidance or oral immunotherapy. Neither of those options is successful in all patients.”

Mark Kaplan, PhD, chair of the Department of Microbiology and Immunology and senior author of the study

The team details their findings in a newly published article in Science Translational Medicine. When someone is allergic to a food, it is a result of allergen proteins cross-linking allergen specific immunoglobulin E (IgE) on the surface of mast cells and basophils. Activation of these cells can lead to anaphylaxis, a severe, life-threatening allergic reaction that can occur very quickly after exposure to an allergen.

Researchers developed peanut-specific inhibitors called covalent heterobivalent inhibitor (cHBI), that successfully blocked mast cell or basophil degranulation and anaphylaxis in an animal model.

“The inhibitor prevented allergic reactions for more than two weeks when given before allergen exposure,” said Nada Alakhras, lead author and a graduate student in the Department of Biochemistry and Molecular Biology. “The inhibitor also prevented fatal anaphylaxis and attenuated allergic reactions when given soon after the onset of symptoms.”

“These new findings suggest that cHBI has the potential to be an effective preventative for peanut-specific allergic responses in patients,” said Basar Bilgicer, PhD, professor of chemical and biomedical engineering at the University of Notre Dame and co-senior author of the study.

The inhibitor has not been tested in human patients yet. Researchers are now doing further testing in animal models to evaluate efficacy and toxicity before moving to clinical trials.

The research was funded in part by the Falk Medical Research Trust Award. Other authors include Anthony L. Sinn, Wenwu Zhang, PhD, MS, and Karen E. Pollok, PhD from IU School of Medicine as well as Gyoyeon Hwang, Jenna Sjoerdsma, Emily K. Bromley, and Jaeho Shin from the University of Notre Dame and Scott A. Smith, MD, PhD from Vanderbilt University Medical Center.

Source:
Journal reference:

Alakhras, N.S., et al. (2023) Peanut allergen inhibition prevents anaphylaxis in a humanized mouse model. Science Translational Medicine. doi.org/10.1126/scitranslmed.add6373.

Cancer immunotherapy does not interfere with COVID-19 immunity in vaccinated patients, study shows

Research findings published in Frontiers in Immunology show that cancer immunotherapy does not interfere with COVID-19 immunity in previously vaccinated patients. These findings support recommending vaccination for patients with cancer, including those receiving systemic therapies, say Saint Louis University scientists.

Immunotherapy is a treatment strategy that boosts a patient’s immune system to attack cancerous cells. In this novel study led by Ryan Teague, Ph.D., professor of molecular microbiology and immunology at Saint Louis University’s School of Medicine, the Teague lab studied T cell responses and antibody responses against the SARS-CoV-2 spike protein in vaccinated and unvaccinated patients receiving immunotherapy.

Their research found data to support the clinical safety and efficacy of COVID-19 vaccination in patients receiving immune checkpoint inhibitors, a class of immunotherapy drugs.

It was thought that patients who had recently been vaccinated for or exposed to COVID-19 may have boosted inflammatory responses after immune checkpoint blockade treatment. The study found that immunotherapy did not tend to boost immune responses against COVID-19 in vaccinated patients, supporting the safety of receiving immune checkpoint inhibitors and the vaccine simultaneously.”

Ryan Teague, Ph.D., professor of molecular microbiology and immunology at Saint Louis University’s School of Medicine

Teague notes that several timely factors came together to enable this research. In July 2022, the Teague lab published a study in Cancer Immunology Immunotherapy using a new technique known as Single-Cell RNA Sequencing, which allows researchers to study genetic information at the individual cell level to characterize immune responses after cancer treatment to identify biomarkers that could predict better patient outcomes.

Having collected blood from more than 100 patients with cancer during the COVID-19 pandemic, Teague recognized the opportunity to extend the benefit of this collection toward improving our understanding of patient immune responses against the vaccine.

“The COVID paper came from a unique window of time where we had a pandemic, and we had this valuable collection of patient samples that we could use to ask this timely question,” Teague said.

Additional authors include graduate students Alexander Piening, Emily Ebert, Niloufar Khojandi, and Assistant Professor Elise Alspach, Ph.D., from the Department of Molecular Microbiology and Immunology at SLU’s School of Medicine.

This work was supported by grant number NIH NCI R01 CA238705 from the National Institutes of Health.

Source:
Journal reference:

Piening, A., et al. (2022) Immune responses to SARS-CoV-2 in vaccinated patients receiving checkpoint blockade immunotherapy for cancer. Frontiers in Immunology. doi.org/10.3389/fimmu.2022.1022732.

Maternal and perinatal outcomes of women infected with SARS-CoV-2 during the Omicron wave in Italy

In a recent study published in the Clinical Microbiology and Infection, researchers assessed the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination on pregnant women during the Omicron wave.

Study: Vaccination against SARS-CoV-2 in pregnancy during the Omicron wave: the prospective cohort study of the Italian obstetric surveillance system. Image Credit: GolF2532/Shutterstock
Study: Vaccination against SARS-CoV-2 in pregnancy during the Omicron wave: the prospective cohort study of the Italian obstetric surveillance system. Image Credit: GolF2532/Shutterstock

Background

During the coronavirus disease 2019 (COVID-19) pandemic, pregnant women were more likely than the general population to develop severe COVID-19. In utero mother-to-child viral transmission was shown to be uncommon, and infected mothers demonstrated a strong immune response with anti-SARS-CoV-2 antibodies passed on to newborns.

Despite many studies indicating a substantial maternal antibody response to SARS-CoV-2 immunization and the absence of safety issues, the vaccination rate among pregnant women remained lower than that of the general population. Only a few studies have been undertaken to date on the impact of the SARS-CoV-2 Omicron variant on unvaccinated and vaccinated pregnant women.

About the study

In the present study, researchers compared the perinatal and maternal outcomes of SARS-CoV-2-infected women in Italy during the SARS-CoV-2 Omicron variant wave based on their vaccination protection.

The current national prospective cohort research involved pregnant women who tested COVID-19-positive within seven days of hospitalization in any Italian maternity unit between January 1 and May 31 2022. In addition, women reported whether they had received the SARS-CoV-2 vaccine, as well as the when (before and/or at the time of pregnancy) and how many doses were received.

The primary outcome measure was SARS-CoV-2 disease severity, classified as mild, moderate, or severe. The two most severe severity categories, determined by pneumonia diagnosis, were grouped together for statistical analysis as “moderate or severe COVID-19 disease” (MSCD). Secondary outcomes comprised preterm birth, stillbirth, delivery mode, admission to the neonatal intensive care unit (NICU), and early neonatal mortality before hospital release.

MSCD protection was taken into account as an exposure variable. Women vaccinated with a minimum of one vaccine dose at the time of pregnancy, and those vaccinated with the full vaccine schedule and the first booster vaccine were protected against MSCD. On the other hand, unvaccinated women and participants who were vaccinated with either one or two vaccine doses prior to pregnancy and tested positive for SARS-CoV-2 at 22 or more gestational weeks were deemed unprotected. Women with incomplete vaccination information and those who were vaccinated with one or two doses prior to pregnancy and who tested positive for SARS-CoV-2 at less than 22 gestational weeks were deemed “unknown in terms of protective status.”

Results

Between January 1 and May 31, 2022, a total of 2,774 women who tested positive for SARS-CoV-2 within seven days of hospitalization were enrolled. Information was available about the protection status of 2147 women, while no significant clinical or socio-demographic variations were noted between these women and the entire cohort.

According to the study’s definition, almost 1,069 (49.8%) individuals were protected against MSCD. Of them, 74 were vaccinated with one vaccine during pregnancy, while 596 received two, including a minimum of one dose administered during pregnancy, while 327 received their first booster. In contrast, 1,078 women were deemed unprotected, including 989 women who were unvaccinated and 89 who tested positive for SARS-CoV-2 at 22 or more weeks of gestation after receiving one or two doses before pregnancy. All except 26 women were immunized with the conventional vaccinations alone or in conjunction with messenger ribonucleic acid (mRNA) vaccines.

Compared to protected women, unprotected women displayed a higher likelihood of being younger, less educated, of foreign nationality, and symptomatic. Also, 96.4% were hospitalized for childbirth or obstetrical causes, whereas 3.6% were hospitalized due to COVID-19. Eight of the latter acquired severe disease, 12 developed a moderate disease, and 58 developed a mild disease.

MSCD illness was uncommon overall but more prevalent among unprotected women than among protected women. Among the 41 MSCD cases, 27 of 29 unprotected women had not received any vaccine, while two were vaccinated with two doses prior to pregnancy. Three of the 12 protected women received the booster, while nine received two doses, among which the first was received before and the second was received during pregnancy.

Among unprotected women, seven out of eight severe infection cases and one maternal fatality occurred. COVID-19 pneumonia was deemed the cause of death, reported two weeks after delivery. Unprotected women had a greater incidence of MSCD compared to protected women, Asian women, and those with a history of comorbidities.

Sensitivity analysis revealed that unprotected women had considerably higher MSCD risk than protected women. Furthermore, 8.7% of newborns were born preterm, predominantly late preterm, with no significant variations between unprotected and protected women, but C-section was reported in 34.4% and 29.3% of women, respectively. The rate of preterm birth was greater among MSCD-infected women compared to those with milder cases and those with CS. Also, out of 619 CS cases, five were urgent/emergent due to COVID-19, and all involved MSCD-affected women.

Conclusion

Overall, the study findings documented a low prevalence of severe SARS-CoV-2 infection in pregnant women and considerable efficacy of the COVID-19 vaccine in providing protection. These statistics can serve as the foundation for informing pregnant women uncertain about the vaccine’s efficacy and demonstrating the importance of vaccination in protecting their newborns.

Journal reference:

Study compares effectiveness of Pfizer vs. Moderna booster COVID vaccines after third dose

In a recent scientific paper published in the journal Nature Microbiology, researchers reproduced two target trials using electronic health records (EHRs) of the Department of Veterans Affairs (VA) to compare the effectiveness of the third dose of BNT162b2 or messenger ribonucleic acid (mRNA)-1273 vaccine among United States (US) veterans.

Study: Comparative effectiveness of third doses of mRNA-based COVID-19 vaccines in US veterans. Image Credit: Steve Heap / ShutterstockStudy: Comparative effectiveness of third doses of mRNA-based COVID-19 vaccines in US veterans. Image Credit: Steve Heap / Shutterstock

Background

There is a lack of head-to-head comparative studies of the effectiveness of a third booster dose of different mRNA-technology-based coronavirus disease 2019 (COVID-19) vaccines. An ideal comparative effectiveness study of mRNA vaccines should cover racially diverse populations and evaluate possible differences in vaccine efficacy based on the time when an individual completed the primary vaccination series. Most importantly, these studies should account for the time windows of the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants.

During the current SARS-CoV-2-induced pandemic, vaccination effectively reduced the burden of severe disease and death from COVID-19. Especially, booster doses of BNT162b2 and mRNA-1273 vaccines countered waning immunity and broadened protection against novel, highly transmissible SARS-CoV-2 variants. In one of their previous work covering 439,684 US veterans, researchers found that both mRNA-1273 and BNT162b2 lowered the risk of SARS-CoV-2 infection and severe disease outcomes during SARS-CoV-2 Alpha variant prevalence.

About the study

In the present study, researchers matched recipients of  BNT162b2 or mRNA-1273 vaccines in a 1:1 ratio based on their risk factors to estimate their comparative effectiveness over 16 and nine weeks in the Delta-Omicron and Omicron period, respectively, for five COVID-19 outcomes:

  • reported SARS-CoV-2 infection,
  • reported symptomatic SARS-CoV-2 infection,
  • SARS-CoV-2 infection-related hospitalization,
  • intensive care unit (ICU) admission, and
  • death.

The veterans in the first emulated trial received the third dose of BNT162b2 or mRNA-1273 vaccines between 20 October 2021 and 8 February 2022. This period corresponded to SARS-CoV-2 Delta and Omicron variants prevalence. For each veteran in the primary analysis, the team started follow-up on the day of the third vaccination (baseline). It ended 16 weeks after baseline, death, or the end of study duration, i.e., 15 February 2022, as applicable.

The veteran population of the second emulated trial received the third dose of any of the two mRNA COVID-19 vaccines between 1 January and 1 March 2022, the period of only Omicron predominance. The median follow-up continued over nine weeks, during which the team documented 214 SARS-CoV-2 infections.

Study findings

In the first emulated trial, 147,553 and 214,728 veterans received the third dose of BNT162b2 and mRNA-1273, respectively. The baseline characteristics of 65,196 BNT162b2 recipients matched to an equal number of mRNA-1273 recipients were comparable compared to the eligible population. The median age of this veteran population was 70 years, 96% were males, and 24% were Blacks.

During the 16-week follow-up spanning Delta and Omicron prevalence, the researchers documented 2,994 SARS-CoV-2 infections, of which 200 were symptomatic COVID-19 cases, 194 sought hospitalization, 52 needed ICU admission, and 22 culminated in death. During this time, the estimated risk of reported infection for the BNT162b2 and mRNA-1273 third dose was 353.9 and 308.5 events per 10,000 individuals, respectively.

In the second emulated trial, 25,557 and 36,809 eligible veterans received the third dose of BNT162b2 mRNA-1273, respectively. Like in the first trial, the matched population comprised 7,894 BNT162b2 and an equal number of mRNA-1273 recipients with comparable baseline demographic and clinical characteristics relative to the eligible population. They had a higher proportion of men and White people.

During nine weeks of follow-up amid Omicron predominance, the estimated risk of documented SARS-CoV-2 infection was higher with a third dose of the BNT162b2 vaccine vs. mRNA-1273. Accordingly, the estimated risk ratio was 1.57, presented as events per 10,000 individuals.

Conclusions

The present study remarkably showed the comparative effect of the third (booster) dose of two mRNA vaccines, BNT162b2  and mRNA-1272, among a nationwide cohort of US veterans. Both vaccines reduced the absolute risks of breakthrough SARS-CoV-2 infections and severe COVID-19 outcomes. However, mRNA-1273 recipients had a lower risk of COVID-19-related adverse events over 16 weeks of follow-up than the mRNA-1273 vaccine recipients, particularly for reported SARS-CoV-2 infections. The findings remained comparable across periods spanning Delta and Omicron predominance and only Omicron predominance. The authors advocated continuous evaluation of the comparative effectiveness and safety of additional (booster) doses of COVID-19 mRNA vaccines in the future.

Journal reference: