Tag Archives: Respiratory

Candida auris infection without epidemiologic links to a prior outbreak

The Centers for Disease Control and Prevention (CDC) has classified Candida auris (C. auris) as an urgent public threat due to its role in elevating mortality, its ability to persist in hospital environments, and the high possibility of developing pan-drug resistance.

Notably, a recent study published in the journal Open Forum Infectious Diseases has pointed out that surfaces near patients with C. auris quickly become re-contaminated after cleaning.

Existing research has not adequately elucidated the environmental reservoirs of C. auris. Further, few studies have reported epidemiologic links associated with C. auris infection. 

Study: The Emergence and Persistence of Candida auris in Western New York with no Epidemiologic Links: A Failure of Stewardship?. Image Credit: Kateryna Kon / ShutterstockStudy: The Emergence and Persistence of Candida auris in Western New York with no Epidemiologic Links: A Failure of Stewardship? Image Credit: Kateryna Kon / Shutterstock

Background

C. auris is a species of fungus that grows as yeast. It is one of the few species of the genus Candida which cause candidiasis in humans. In the past, C. auris infection was primarily found in cancer patients or those subjected to feeding tubes.

In the United States (US), the emergence of C. auris was traced to New York, and surveillance for this fungal infection was focused mainly on New York City to detect outbreaks. Recently, scientists investigated the association between genomic epidemiology and C. auris infection in Western New York.

A Case Study

The study describes the emergence of C. auris in a patient hospitalized at a small community hospital in Genesee County, New York (NY). In January 2022, C. auris was isolated from the urine culture of a 68-year-old male on the 51st day of hospitalization.

This patient had no known epidemiological connections outside his immediate community. Before his hospitalization, he was not exposed to other patients or family members associated with C. auris infection.

This patient had no history of organ transplantation, decubitus ulcers, hemodialysis, feeding tubes, or nursing home stays. He had an active lifestyle with a history of mild vascular dementia. He was hospitalized due to pneumonia and was prescribed azithromycin treatment.

Post hospitalization, he tested positive for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and was treated with dexamethasone (6 mg) daily for 10 days and remdesivir (200 mg) once, followed by 100 mg daily for five days.

Since the patient’s chest radiograph showed left lobar consolidation, he was further treated with empiric ceftriaxone and azithromycin. As the respiratory symptoms deteriorated, he received non-invasive positive pressure ventilation, with subsequent endotracheal intubation for eight days. He was successfully extubated. He developed a fever and received antimicrobial therapy for 73 days. The patient had a urinary catheter and a peripherally inserted central line in his arm for 35 days. 

Microbiology culture test and serum procalcitonin levels remained negative and within normal levels. On the 22nd day of hospitalization, Candida albicans were isolated from respiratory samples. On the 51st day, the urine culture revealed the presence of azole-resistant C. auris.

The isolated C. auris (MRSN101498) was forwarded to the Multidrug-resistant organism Repository and Surveillance Network (MRSN), where genomic sequencing was performed. After the patient was discharged, the hospital room was cleaned using hydrogen peroxide and peracetic acid, followed by ultraviolet-C light. Other patients who shared rooms with the patient with C. auris were tested for infection.

Study Outcomes

C. auris was not detected in the Western NY community hospital in the past year. Physicians stated that the patient received excessive antibiotic treatment for a prolonged period. Genomic studies revealed that the MRSN101498 genome sequence was closely related to the 2013 Indian strain with minor genomic differences. Interestingly, the K143R mutation in ERG11 was found in MRSN101498, which is associated with triazole resistance in Candida albicans.

Whole genome single nucleotide polymorphism (SNP) analysis also highlighted that MRSN101498 was strongly genetically related to four other isolates, with marginal differences.

These isolates were linked to an outbreak in March 2017 in a hospital 47 miles northeast of Rochester, NY. Based on the current findings, it is highly likely that isolates from Western NY share a recent common ancestor.

Study Importance

This case study is important for several reasons, including the absence of epidemiologic links to C.auris infection. Since reports from rural sectors are rare, this study addresses a vital surveillance ‘blind spot.’ 

However, the current study failed to identify the potential reservoirs of MRSN101498 in Western NY. Sporicidal disinfectants were inefficient for both Clostridioides difficile and C. auris. However, terminal cleaning protocols that included UV irradiation and sporicidal cleaning agents were able to eradicate C. auris effectively.

The current study highlights the role of excessive antibiotic exposure in the emergence of C. auris. It also indicates the challenges in eliminating fungi from hospital settings. The authors recommend proper antibiotic treatment and cleaning procedures for drug-resistant pathogens.

Journal reference:

Low-cost, universal oral COVID-19 vaccine prevents severe respiratory illness in hamsters

A UCLA-led team has developed an inexpensive, universal oral COVID-19 vaccine that prevented severe respiratory illness and weight loss when tested in hamsters, which are naturally susceptible to SARS-CoV-2. It proved as effective as vaccines administered by injection or intranasally in the research.

If ultimately approved for human use, it could be a weapon against all COVID-19 variants and boost uptake, particularly in low- and middle-income countries, and among those with an aversion to needles.

The study is published in the peer-reviewed journal Microbiology Spectrum.

The oral vaccine is based primarily on the nucleocapsid protein, which is the most abundantly expressed of the virus’s four major structural proteins and evolves at a much slower rate than the frequently mutating spike protein. The vaccine utilizes a highly weakened bacterium to produce the nucleocapsid protein in infected cells as well as the membrane protein, which is another highly abundant viral structural protein.

Being a universal vaccine based primarily upon the nucleocapsid protein, the vaccine is resistant to the incessant mutations of the SARS-CoV-2 spike protein upon which virtually all current vaccines are based. As a result, current vaccines rapidly become obsolete, requiring that they repeatedly be re-engineered. Hence, our vaccine should protect against new and emerging variants of SARS-CoV-2.”

Dr. Marcus Horwitz, senior author, distinguished professor of medicine in the Division of Infectious Diseases and of microbiology, immunology and molecular genetics at the David Geffen School of Medicine at UCLA

Oral delivery also makes it easier to distribute the vaccine in resource poor areas of the world by eliminating the need for needles, syringes, and trained personnel to deliver injectable vaccines, he added. “An oral vaccine may also be attractive to many people with vaccine hesitancy on account of fear of needles.”

The researchers noted that while it worked exceptionally well in preventing severe respiratory illness, it did not provide full protection against high viral loads in the hamsters. Also, they did not test it against the Omicron strain, which contains a nearly identical nucleocapsid protein, because of this strain’s low virulence in the golden Syrian hamsters they used.

But the vaccine, they write, “is efficacious when administered via the oral route against COVID-19-like disease in a highly demanding animal model. This conveniently administered, easily manufactured, inexpensive, and readily stored and transported vaccine could play a major role in ending the COVID-19 pandemic by protecting immunized individuals from serious disease from current and future strains of SARS-CoV-2.”

The next step in the process will be to manufacture the vaccine for oral administration via an acid-resistant enteric capsule that will allow the vaccine to be safely released in the small intestine, Horwitz said. It will then be tested for safety, immunogenicity, and efficacy in humans.

“We also plan to expand the vaccine to protect against infections caused by other types of potentially pandemic coronaviruses such as the virus that causes Middle Eastern Respiratory Syndrome (MERS),” he added.

Additional authors are Qingmei Jia and Saša Masleša-Galić of UCLA; Helle Bielefeldt-Ohmann of the University of Queensland, Australia; and Rachel Maison, Airn Hartwig, and Richard Bowen of Colorado State University.

This study was supported by a Corona Virus Seed grant from the UCLA AIDS Institute and Charity Treks and by the National Institutes of Health (AI141390).

Source:
Journal reference:

Jia, Q., et al. (2023). Oral Administration of Universal Bacterium-Vectored Nucleocapsid-Expressing COVID-19 Vaccine is Efficacious in Hamsters. Microbiology Spectrum. doi.org/10.1128/spectrum.05035-22.

Co-infection with MRSA ‘superbug’ could make COVID-19 outcomes even more deadly

Global data shows nearly 10 per cent of severe COVID-19 cases involve a secondary bacterial co-infection – with Staphylococcus aureus, also known as Staph A., being the most common organism responsible for co-existing infections with SARS-CoV-2. Researchers at Western have found if you add a ‘superbug’ – methicillin-resistant Staphylococcus aureus (MRSA) – into the mix, the COVID-19 outcome could be even more deadly.

The mystery of how and why these two pathogens, when combined, contribute to the severity of the disease remains unsolved. However, a team of Western researchers has made significant progress toward solving this “whodunit”.

New research by Mariya Goncheva, Richard M. Gibson, Ainslie C. Shouldice, Jimmy D. Dikeakos and David E. Heinrichs, has revealed that IsdA, a protein found in all strains of Staph A., enhanced SARS-CoV-2 replication by 10- to 15-fold. The findings of this study are significant and could help inform the development of new therapeutic approaches for COVID-19 patients with bacterial co-infections.

Interestingly, the study, which was recently published in iScience, also showed that SARS-CoV-2 did not affect the bacteria’s growth. This was contrary to what the researchers had initially expected.

We started with an assumption that SARS-CoV-2 and hospitalization due to COVID-19 possibly caused patients to be more susceptible to bacterial infections which eventually resulted in worse outcomes.”

Mariya Goncheva

Goncheva is a former postdoctoral associate, previously with the department of microbiology and immunology at Schulich School of Medicine & Dentistry.

Goncheva said bacterial infections are most commonly acquired in hospital settings and hospitalization increases the risk of co-infection. “Bacterial infections are one of the most significant complications of respiratory viral infections such as COVID-19 and Influenza A. Despite the use of antibiotics, 25 per cent of patients co-infected with SARS-CoV-2 and bacteria, die as a result. This is especially true for patients who are hospitalized, and even more so for those in intensive care units. We were interested in finding why this happens,” said Goncheva, lead investigator of the study.

Goncheva, currently Canada Research Chair in virology and professor of biochemistry and microbiology at the University of Victoria, studied the pathogenesis of multi-drug resistant bacteria (such as MRSA) supervised by Heinrichs, professor of microbiology and immunology at Schulich Medicine & Dentistry.

When the COVID-19 pandemic hit, she pivoted to study interactions between MRSA and SARS-CoV-2.

For this study, conducted at Western’s level 3 biocontainment lab, Imaging Pathogens for Knowledge Translation (ImPaKT), Goncheva’s work created an out-of-organism laboratory model to study the interactions between SARS-CoV-2 and MRSA, a difficult-to-treat multi-drug resistant bacteria.

“At the beginning of the pandemic, the then newly opened ImPaKT facility made it possible for us to study the interactions between live SARS-CoV-2 virus and MRSA. We were able to get these insights into molecular-level interactions due to the technology at ImPaKT,” said Heinrichs, whose lab focuses on MRSA and finding drugs to treat MRSA infections. “The next step would be to replicate this study in relevant animal models.”

Source:
Journal reference:

Goncheva, M. I., et al. (2023). The Staphylococcus aureus protein IsdA increases SARS CoV-2 replication by modulating JAK-STAT signaling. IScience. doi.org/10.1016/j.isci.2023.105975.

New SARS-CoV-2 Omicron XBB.1.5 variant has high transmissibility and infectivity, study finds

COVID-19 has caused significant global panic after its rapid emergence more than 3 years ago. Although we now have highly effective vaccines against the SARS-CoV-2 virus, which causes COVID-19, scientists continue to study emerging SARS-CoV-2 variants in order to safeguard public health and devise global preventive strategies against emerging variants. A team led by Japanese researchers has recently discovered that the SARS-CoV-2 Omicron XBB.1.5 variant, prevalent in the Western hemisphere, has high transmissibility and infectivity.

New SARS-CoV-2 Omicron XBB.1.5 variant has high transmissibility and infectivity, study finds
New SARS-CoV-2 variant may jeopardize public health across the globe. The SARS-CoV-2 Omicron XBB.1.5 variant spreads rapidly and is more infectious than its historic precursor. Image Credit: The University of Tokyo

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for millions of deaths worldwide. Although scientists have designed novel vaccines to counter COVID-19, they are constantly on the lookout for emerging variants that can bypass vaccine resistance and potentially jeopardize global public health. A team led by Japanese researchers has recently been successful in characterizing the new SARS-CoV-2 Omicron XBB.1.5 variant, which was first detected in October 2022. Their findings were published on January 31, 2023 in volume 23 of The Lancet Infectious Diseases.​​​

Says senior author Prof. Kei Sato from the Division of Systems Virology, The Institute of Medical Science, The University of Tokyo, Japan, “Because the Omicron XBB.1.5 variant can spread more rapidly than previous variants and has a potential to cause the next epidemic surge, we should carefully monitor it to safeguard public health.”

While studying emerging variants of the SARs-CoV-2 Omicron lineage, the research team made a startling discovery: the SARS-CoV-2 Omicron XBB.1.5 variant has a novel mutation in the spike (S) protein—the protein that anchors the virus firmly to the human angiotensin converting enzyme-2 (ACE2) receptor, thus facilitating the invasion of human cells. The serine-to-proline amino acid mutation noted at residue no. 486 in the S protein is virologically concerning because of a variety of reasons.

Sharing his concerns, first author Keiya Uriu from the Division of Systems Virology, Department of Microbiology and Immunology, The University of Tokyo, Japan, says, “In late 2022, the SARS-CoV-2 Omicron BQ.1 and XBB lineages, characterized by amino acid substitutions in the S protein and increased viral fitness, had become predominant in the Western and Eastern Hemisphere, respectively. In 2022, we elucidated the characteristics of a variety of newly emerging SARS-CoV-2 Omicron subvariants. At the end of 2022, the XBB.1.5 variant, a descendant of XBB.1 that acquired the S:S486P substitution, emerged and was rapidly spreading in the USA.”

To gain mechanistic insights into the infectivity, transmissibility, and immune response associated with XBB.1.5, the team conducted a series of experiments. For instance, upon conducting epidemic dynamics analysis—statistical modeling that facilitates the analysis of the general characteristics of any epidemic—the team realized that the relative effective reproduction number (Re) of XBB.1.5 was 1.2-fold greater than that of the parental XBB.1. This indicated that an individual with the XBB.1.5 variant could infect 1.2 times more people in the population than someone with the parental XBB.1 variant. Moreover, the team also realized that, as of December 2022, XBB.1.5 was rapidly outcompeting BQ.1.1, the predominant lineage in the United States.

Co-first-author Jumpei Ito from the Division of Systems Virology, remarks, “Our data suggest that XBB.1.5 will rapidly spread worldwide in the near future.”

The team also studied the virological features of XBB.1.5 to determine how tightly the S protein of the new variant interacts with the human ACE2 receptor. To this end, the researchers conducted a yeast surface display assay. The results showed that the dissociation constant (KD) corresponding to the physical interaction between the XBB.1.5 S receptor-binding domain (RBD) and the human ACE2 receptor is significantly (4.3-fold) lower than that for XBB.1 S RBD. “In other words, the XBB.1.5 variant binds to human ACE2 receptor with very high affinity,” explains Shigeru Fujita from the Division of Systems Virology.

Further experiments using lentivirus-based pseudoviruses also showed that XBB.1.5 had approximately 3-fold higher infectivity than XBB.1. These results suggest that XBB.1.5 exhibits a remarkably strong affinity to the human ACE2 receptor, which can be attributed to the S486P substitution.

The study by Prof. Sato and his team led to another important discovery from an immunization perspective. The XBB.1.5 S protein was found to be highly resistant to neutralization antibodies elicited by breakthrough infection with the BA.2/BA.5 subvariants. In other words, patients with prior infection from the BA.2/BA.5 subvariants may not show robust immunity against XBB.1.5, increasing their chances of infection and disease.

The results of our virological experiments explain why the Omicron XBB.1.5 variant has a higher transmissibility than past variants: This variant acquired strong binding ability to human ACE2 while maintaining a higher ability to escape from neutralizing antibodies.”

​​​​​​​Yusuke Kosugi, Division of Systems Virology, Department of Microbiology and Immunology, The University of Tokyo, Japan

Contributing members of The Genotype to Phenotype Japan (G2P-Japan) Consortium conclude, “The SARS-CoV-2 Omicron XBB.1.5 variant does show enhanced transmissibility. Although few cases have been detected in the Eastern hemisphere, it could become a looming threat. Imminent prevention measures are needed.”

​​​​​​​Thanks to the research team for the early warning! Meanwhile, we must continue adopting safe practices to defend ourselves from XBB.1.5. 

Source:
Journal reference:

Uriu, K., et al. (2023) Enhanced transmissibility, infectivity, and immune resistance of the SARS-CoV-2 omicron XBB.1.5 variant. The Lancet Infectious Diseases. doi.org/10.1016/S1473-3099(23)00051-8.

Real-world data on the effectiveness of Sotrovimab as a prophylactic against COVID-19

*Important notice: medRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

In a recent study posted in the medRxiv* preprint server, scientists assessed the efficacy of sotrovimab for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) treatment.

Emerging SARS-CoV-2 variants have lowered the fold change in half maximal effective concentration (EC50) for the SARS-CoV-2 Omicron BA.2 sublineage and subsequent sublineages. Yet, the association between this decrease and clinical efficacy outcomes is unknown. With a lack of clinical trials evaluating the efficacy of sotrovimab against novel variants, real-world evidence becomes an essential data source.

Study: Real-world effectiveness of sotrovimab for the treatment of SARS-CoV-2 infection during Omicron BA.2 subvariant predominance: a systematic literature review. Image Credit: Cryptographer / ShutterstockStudy: Real-world effectiveness of sotrovimab for the treatment of SARS-CoV-2 infection during Omicron BA.2 subvariant predominance: a systematic literature review. Image Credit: Cryptographer / Shutterstock

About the study

In the present study, researchers assessed the efficacy of sotrovimab on severe coronavirus disease 2019 (COVID-19) outcomes throughout the period of the prevalence of the SARS-CoV-2 Omicron BA.2 subvariant.

This systematic literature review (SLR) comprised observational papers assessing clinical outcomes as well as the viral load in sotrovimab-treated patients, which were published between 1 January 2022 and 3 November 2022 in preprint articles, peer-reviewed journal publications, and conference abstracts. To identify data related to Omicron BA.2 and the following subvariants, the team chose a suitable publication period for the systematic review.

The following electronic databases were searched on 3 November 2022: MEDLINE, LitCovid, Embase, EcoLit, and Cochrane COVID-19 Study Registry. Further searches were undertaken in medRvix, bioRvix, arRvix, xhemRvix, Preprints.org, SSRN, and ResearchSquare for relevant preprints. In addition, relevant abstracts from the following conferences were indexed beginning in January 2022: Infectious Diseases Week, International Conference on Emerging Infectious Diseases, European Respiratory Society, and European Congress of Clinical Microbiology and Infectious Diseases.

Data extraction from the listed studies was conducted by a single extractor using a Microsoft Excel-designed data extraction file. Information extracted included the study’s title and citation, data source, study design and details, country, number of patients, study population, data collection period and circulating SARS-CoV-2 variants, duration of follow-up, key baseline features, and clinical outcomes. The clinical outcomes taken into account for the study included hospital admission, intensive care admission, respiratory support, emergency department visits, mortality, COVID-19 progression, the relative and absolute change in viral load observed during the acute phase after sotrovimab therapy, and the number of patients having undetectable viral load after sotrovimab treatment.

Results

Initial searches of electronic databases generated 257 studies. Another 263 studies were found by searching preprints, conference abstracts, and citation chasing from appropriate SLRs. After removing duplicates, 343 unique abstracts and titles were evaluated, of which 89 were deemed eligible for full-text review. Five observational trials reporting viral load or clinical outcome data associated with sotrovimab during the era of BA.2 predominance were deemed appropriate for inclusion in the present SLR.

Point estimates for hospitalization or mortality (as a composite endpoint) or clinical progression for sotrovimab-treated patients. a95 CIs calculated via Clopper-Pearson methods using reported data. bDefined as March through April 2022 in source and assumes homogeneity in the distribution of SARS-CoV-2 variants across all US states. cOnly COVID-19-specific outcome shown; all-cause outcome also reported in source. dHospitalizations were COVID-19-specific; deaths could be due to any cause. CI confidence interval

Point estimates for hospitalization or mortality (as a composite endpoint) or clinical progression for sotrovimab-treated patients. a95 CIs calculated via Clopper-Pearson methods using reported data. bDefined as March through April 2022 in source and assumes homogeneity in the distribution of SARS-CoV-2 variants across all US states. cOnly COVID-19-specific outcome shown; all-cause outcome also reported in source. dHospitalizations were COVID-19-specific; deaths could be due to any cause. CI confidence interval

The number of patients reporting hospitalization or fatality due to COVID-19 was consistently low for all investigations and periods of the prevalence of Omicron BA.1 and BA.2 variants. COVID-19-related hospital admission or mortality rates were between 1.0% and 3.1% for sotrovimab-treated patients during Omicron BA.1 prevalence and from 1.0% and 3.6% when BA.2 was predominant. The number of patients who reported hospitalization and mortality due to all causes ranged from 2.1% to 2.7% for the BA.1 predominance era, and from 1.7% to 2.0% for the BA.2 era. During Omicron BA.1 predominance, COVID-19-related mortality was projected to be 0.21% for the sotrovimab group versus 0.67% for the molnupiravir group, and 0.15% versus 0.96% for the BA.2 era, respectively.

During the BA.1 and BA.2 subvariant surges, sotrovimab was associated with a significantly decreased incidence of 28-day SARS-CoV-2-related hospital admission or fatality compared to molnupiravir. After statistical adjustment for demographics, vaccination status, high-risk cohort categories, body mass index, calendar time, and other comorbidities, the findings indicated that sotrovimab was associated with a significantly lower risk of COVID-19-related hospital admission or mortality compared to molnupiravir during the BA.1 and BA.2 periods.

During the BA.2 subvariant surge, sotrovimab was linked with a decreased risk of 30-day hospitalization or mortality from all causes compared to no mAb treatment. In March 2022, sotrovimab was considerably more successful than non-mAb-treated patients, with an adjusted reduction of 59% in relative risk and a propensity score-matched relative risk reduction of 64% with respect to 30-day all-cause hospital admission or mortality. Similar risks of hospitalization were associated with BA.1 and BA.2 patients treated with sotrovimab.

Conclusion

The study findings showed that sotrovimab continued to be clinically effective in mitigating severe clinical outcomes associated with SARS-CoV-2 infections during the period of SARS-CoV-2 Omicron BA.2 predominance compared to the control/comparator and relative to Omicron BA.1 predominance. During Omicron BA.1 and BA.2 subvariant predominance, the studies consistently reported low rates of poor clinical outcomes in individuals treated with sotrovimab.

*Important notice: medRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Journal reference:

Wayne State team discovers a simple technology to detect active TB infection antibodies

A team of faculty from Wayne State University has discovered new technology that will quickly and easily detect active Mycobacterium tuberculosis (TB) infection antibodies. Their work, “Discovery of Novel Transketolase Epitopes and the Development of IgG-Based Tuberculosis Serodiagnostics,” was published in a recent edition of Microbiology Spectrum, a journal published by the American Society for Microbiology. The team is led by Lobelia Samavati, M.D., professor in the Center for Molecular Medicine and Genetics in the School of Medicine. Samavati was joined by Jaya Talreja, Ph.D, and Changya Peng, research scientists in Wayne State’s Department of Internal Medicine.

TB remains a global health threat, with 10 million new cases and 1.7 million deaths annually. According to the latest World Health Organization report, TB is the 13th leading cause of death and the second leading infectious killer after COVID-19. Latent tuberculous infection (LTBI) is considered a reservoir for TB bacteria and subjects can progress to active TB. One-third of the world’s population is infected with TB and, on average, 5 to 10% of those infected with LTBI will develop active TB disease over the course of their lives, usually within the first five years after initial infection.

The gold standard tests to determine whether an infection is active TB are the sputum smear and culture tests. However, these methods require collecting sputum, which is time consuming, expensive, requires trained personnel and lacks sensitivity. The current conventional tests differentiating LTBI from uninfected controls -; such as tuberculin skin tests (TST) and/or interferongamma release assay (IGRA) -; do not differentiate between active TB infection and latent TB. Despite advances in rapid molecular techniques for TB diagnostics, there is an unmet need for a simple inexpensive point-of-care (POC), rapid non-sputum-based test.

Samavati’s research group has worked for more than 15 years to develop technology for detection of antibodies in various respiratory diseases. Her lab has developed a novel non-sputum based technology and has discovered several novel immune-epitopes that differentialy bind to specific immunoglobulin (IgG) in TB-infected subjects. The levels of epitope-specific IgG in seum can differentiate active TB from LTBI subjects, healthy contols and other respiratory diseases. This technology can be used as a simple serum assay non-sputum based serological POC- TB test, which is highly specific and sensitveto diffentiate active TB from LTBI.

“Previously, we developed a T7 phage antigen display platform and after immunoscreening of large sets of serum samples, identified 10 clones that differentially bind to serum antibody (IgG) of active TB patients differentiating TB from other respiratory diseases,” said Samavati. “One of these high-performance clones had homology to the Transketolase (TKT) enzyme of TB bacteria that is an essential enzyme required for the intracellular growth of the bacteria in a host. We hypothesized that abundance of IgG in sera against the identified novel neoantigen that we named as TKTµ may differentiate between active TB, LTBI and other non-TB granulomatous lung diseases such as sarcoidosis. We developed a novel direct Peptide ELISA test to quantify the levels of IgG in serum samples against TKTµ. We designed two additional overlapping M.tb TKT-peptide homologs with potential antigenicity corresponding to M.tb-specific transketolase (M.tb-TKT1 and M.tb-TKT3) and hence standardized three Peptide ELISA (TKTμ, M.tb TKT1 and M.tb TKT3) for the TB serodiagnosis.”

After development and standardization of a direct peptide ELISA for three peptides, the research team tested 292 subjects, and their TKT-peptide ELISA results show that TB patients have significantly higher levels of TKT-specific antibodies compared to patients who were healthy controls and with LTBI. The increased levels of TKT-specific antibodies is presumably associated with growing M.tb bacteria in active TB patients. TKT plays a key role in the switch from the dormancy to proliferative phase and TKT specific IgG may uncover the differences between active TB and LTBI. Thus, IgG-based serodiagnosis of TB with TKT-peptide ELISA is promising.

Currently, commercially available serological TB tests show poor sensitivity and specificity. The ELISA results obtained with the Wayne State team’s discovered TKT peptides yielded high specificity and sensitivity. Their results show that IgG antibodies against transketolase can discriminate active tuberculosis. 

Our TKT peptide ELISA test requires chemically synthesized TKT peptides to coat the wells in the ELISA plate, less than 100µl blood serum sample from patient, detection reagents and an ELISA plate reader. We are extremely enthusiastic about our technology and the fact that with a simple test we can differentiate active TB from LTBI and other respiratory diseases. We believe that our method and TKT peptide ELISA can fit the requirements of the World Health Organization and the Centers for Disease Control and Prevention as a POC screening method.”

Lobelia Samavati, M.D., Professor, Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University

The research team has applied a patent application on its technology and is actively seeking companies interested in investing.

This research was supported by the National Heart, Lung and Blood Institute of the National Institutes of Health, grant numbers 113508 and 148089. The Foundation for Innovative New Diagnostics (FIND, Geneva, Switzerland) provided TB and LTBI samples.

Source:
Journal reference:

Talreja, J., et al. (2023). Discovery of Novel Transketolase Epitopes and the Development of IgG-Based Tuberculosis Serodiagnostics. Microbiology Spectrum. doi.org/10.1128/spectrum.03377-22.

Study finds community-onset bacterial coinfection in children with critical COVID-19 is infrequent but empiric antibiotics are commonly prescribed

In a recent study published in Open Forum Infectious Diseases, researchers evaluated the use of empiric antibiotics to determine the prevalence rates of community-acquired bacterial coinfections among hospitalized pediatric critical coronavirus disease 2019 (COVID-19) patients and to identify opportunities for de-escalating antibiotic usage in case of no bacteria-caused sepsis among high-risk individuals, and those presenting with shock.

Study: Community-onset bacterial coinfection in children critically ill with SARS-CoV-2 infection. Image Credit: nokwalai/Shutterstock
Study: Community-onset bacterial coinfection in children critically ill with SARS-CoV-2 infection. Image Credit: nokwalai/Shutterstock

Background

Community-acquired bacterial coinfections among hospitalized adult coronavirus disease 2019 (COVID-19) patients are uncommon; however, empiric antibiotic usage is reportedly high. Data on empiric antibiotic usage and bacterial coinfections among pediatric individuals with critical severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are limited.

The clinical manifestations of severe SARS-CoV-2 infections often include pulmonary distress and fever, findings that could be difficult to discriminate from serious bacterial infections, which might prompt the use of empiric antibiotics in the initial days of hospitalization, particularly among high-risk individuals.

About the study

In the present study, researchers investigated whether any radiographic, laboratory, or clinical features ascertainable during hospitalization were related to empiric antibiotic usage or were estimative of bacterial coinfections acquired in community settings.

The team evaluated individuals below 19.0 years and admitted to pediatric high-acuity units (HAU) or intensive care units (ICU) due to SARS-CoV-2 infections from March 2020 to December 2020. On the basis of microbiology reports from the initial 72 hours of hospitalization, the team adjudicated if patients had community-acquired bacterial coinfections.

Clinical and demographic variables of individuals with and without antibiotic prescriptions and bacterial coinfections in the initial days of hospitalization were compared. Poisson regression modeling was performed to assess factors related to the outcome, and the adjusted relative risk (aRR) values were calculated.

Data were obtained from patient electronic medical records and data from the nationwide overcoming COVID-19 population health active surveillance registry of patients hospitalized due to COVID-19-associated complications between 15 March 2020 and 31 December 2020 across >70.0 pediatric hospitals in 25 states.

COVID-19 diagnosis was confirmed using polymerase chain reaction (PCR). The team excluded multisystem inflammatory syndrome among children (MIS-C) patients diagnosed using the Centers for Disease Control and Prevention (CDC) criteria. Data were obtained on demographic parameters, clinical symptoms and signs, comorbidities, radiographical and laboratory investigations, and data on antibiotics prescribed at admission and the course of critical COVID-19, including clinical outcomes and hemodynamic and respiratory support needed.

The primary study outcome assessed was the prescriptions of empirical antimicrobials, for which enteral or intravenous antimicrobials administered in the initial two days of hospital admission were assessed. The second outcome evaluated community-acquired bacterial infection presence, for which relevant case report form (CRF) information from individuals with SARS-CoV-2-positive microbiological cultures, and PCR, were analyzed in the initial 72 hours of hospital admission.

Results

Out of 532 individuals, 63.0% were administered empiric antibiotics; however, only seven percent developed bacterial coinfections, of which only three percent were respiratory-type. Empirical antibiotics had a greater likelihood of being prescribed to immunosuppressed individuals (aRR of 1.3), requiring non-mechanical ventilator-type respiratory aid (aRR of 1.4), or requiring invasive-type mechanical ventilators (aRR of 1.8), than no respiratory aid.

The most frequently prescribed antimicrobials were ceftriaxone (41%) and vancomycin (28%), followed by cefepime (20%). Most individuals were prescribed multiple antimicrobials, with 21%, 10%, and 18% receiving 2.0, 3.0, and ≥4.0 antibiotics in the initial two days of hospital admission. More than 33% of individuals received antibiotics for ≥5.0 days, despite no evidence of bacterial coinfections. The median social vulnerability index (SVI) values were significantly greater among those who received antibiotics than those who did not.

The median C-reactive protein (CRP) levels were greater among those who received antibiotics versus those who did not (4.6 mg per dL vs. 2.2 mg per dL), as were the median procalcitonin levels (0.4 ng per mL vs. 0.1 ng per mL). The median leukocyte counts showed no significant differences between the two groups. Antibiotic usage was related to COVID-19 severity, indicated by greater median values for PEdiatric Logistic Organ Dysfunction-2 (PELOD-2) scores at hospitalization among individuals who received antibiotics than those who did not.

Seven percent (n=38) of individuals had true community-onset bacterial coinfections, of which 13, 16, 8.0, and 4.0 were bloodstream infections, respiratory infections, urinary tract infections, and bacterial infections at other sites (peritonitis, colitis, meningitis, and pharyngitis), respectively.

No particular pathogenic organism predominantly caused bacterial coinfections, although most pulmonary coinfections were caused by Staphylococcus aureus and/or Pseudomonas aeruginosa. Greater PELOD-2 scores at admission were associated with bacterial coinfections (aRR of 1.2), in addition to age, sex, and pulmonary conditions other than asthma (aRR 2.3).

Conclusion

Overall, the study findings showed that community-onset bacterial coinfections among children with critical COVID-19 are not frequent; however, empiric antibiotics are usually prescribed. The study findings inform antibiotic use and underpin swift de-escalation in case assessments indicating that coinfections are not likely.

Journal reference:

Maternal and perinatal outcomes of women infected with SARS-CoV-2 during the Omicron wave in Italy

In a recent study published in the Clinical Microbiology and Infection, researchers assessed the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination on pregnant women during the Omicron wave.

Study: Vaccination against SARS-CoV-2 in pregnancy during the Omicron wave: the prospective cohort study of the Italian obstetric surveillance system. Image Credit: GolF2532/Shutterstock
Study: Vaccination against SARS-CoV-2 in pregnancy during the Omicron wave: the prospective cohort study of the Italian obstetric surveillance system. Image Credit: GolF2532/Shutterstock

Background

During the coronavirus disease 2019 (COVID-19) pandemic, pregnant women were more likely than the general population to develop severe COVID-19. In utero mother-to-child viral transmission was shown to be uncommon, and infected mothers demonstrated a strong immune response with anti-SARS-CoV-2 antibodies passed on to newborns.

Despite many studies indicating a substantial maternal antibody response to SARS-CoV-2 immunization and the absence of safety issues, the vaccination rate among pregnant women remained lower than that of the general population. Only a few studies have been undertaken to date on the impact of the SARS-CoV-2 Omicron variant on unvaccinated and vaccinated pregnant women.

About the study

In the present study, researchers compared the perinatal and maternal outcomes of SARS-CoV-2-infected women in Italy during the SARS-CoV-2 Omicron variant wave based on their vaccination protection.

The current national prospective cohort research involved pregnant women who tested COVID-19-positive within seven days of hospitalization in any Italian maternity unit between January 1 and May 31 2022. In addition, women reported whether they had received the SARS-CoV-2 vaccine, as well as the when (before and/or at the time of pregnancy) and how many doses were received.

The primary outcome measure was SARS-CoV-2 disease severity, classified as mild, moderate, or severe. The two most severe severity categories, determined by pneumonia diagnosis, were grouped together for statistical analysis as “moderate or severe COVID-19 disease” (MSCD). Secondary outcomes comprised preterm birth, stillbirth, delivery mode, admission to the neonatal intensive care unit (NICU), and early neonatal mortality before hospital release.

MSCD protection was taken into account as an exposure variable. Women vaccinated with a minimum of one vaccine dose at the time of pregnancy, and those vaccinated with the full vaccine schedule and the first booster vaccine were protected against MSCD. On the other hand, unvaccinated women and participants who were vaccinated with either one or two vaccine doses prior to pregnancy and tested positive for SARS-CoV-2 at 22 or more gestational weeks were deemed unprotected. Women with incomplete vaccination information and those who were vaccinated with one or two doses prior to pregnancy and who tested positive for SARS-CoV-2 at less than 22 gestational weeks were deemed “unknown in terms of protective status.”

Results

Between January 1 and May 31, 2022, a total of 2,774 women who tested positive for SARS-CoV-2 within seven days of hospitalization were enrolled. Information was available about the protection status of 2147 women, while no significant clinical or socio-demographic variations were noted between these women and the entire cohort.

According to the study’s definition, almost 1,069 (49.8%) individuals were protected against MSCD. Of them, 74 were vaccinated with one vaccine during pregnancy, while 596 received two, including a minimum of one dose administered during pregnancy, while 327 received their first booster. In contrast, 1,078 women were deemed unprotected, including 989 women who were unvaccinated and 89 who tested positive for SARS-CoV-2 at 22 or more weeks of gestation after receiving one or two doses before pregnancy. All except 26 women were immunized with the conventional vaccinations alone or in conjunction with messenger ribonucleic acid (mRNA) vaccines.

Compared to protected women, unprotected women displayed a higher likelihood of being younger, less educated, of foreign nationality, and symptomatic. Also, 96.4% were hospitalized for childbirth or obstetrical causes, whereas 3.6% were hospitalized due to COVID-19. Eight of the latter acquired severe disease, 12 developed a moderate disease, and 58 developed a mild disease.

MSCD illness was uncommon overall but more prevalent among unprotected women than among protected women. Among the 41 MSCD cases, 27 of 29 unprotected women had not received any vaccine, while two were vaccinated with two doses prior to pregnancy. Three of the 12 protected women received the booster, while nine received two doses, among which the first was received before and the second was received during pregnancy.

Among unprotected women, seven out of eight severe infection cases and one maternal fatality occurred. COVID-19 pneumonia was deemed the cause of death, reported two weeks after delivery. Unprotected women had a greater incidence of MSCD compared to protected women, Asian women, and those with a history of comorbidities.

Sensitivity analysis revealed that unprotected women had considerably higher MSCD risk than protected women. Furthermore, 8.7% of newborns were born preterm, predominantly late preterm, with no significant variations between unprotected and protected women, but C-section was reported in 34.4% and 29.3% of women, respectively. The rate of preterm birth was greater among MSCD-infected women compared to those with milder cases and those with CS. Also, out of 619 CS cases, five were urgent/emergent due to COVID-19, and all involved MSCD-affected women.

Conclusion

Overall, the study findings documented a low prevalence of severe SARS-CoV-2 infection in pregnant women and considerable efficacy of the COVID-19 vaccine in providing protection. These statistics can serve as the foundation for informing pregnant women uncertain about the vaccine’s efficacy and demonstrating the importance of vaccination in protecting their newborns.

Journal reference:

What are the major findings of long COVID research?

In a recent review published in Nature Reviews Microbiology, researchers explored existing literature on long coronavirus disease (COVID). They highlighted key immunological findings, similarities with other diseases, symptoms, associated pathophysiological mechanisms, and diagnostic and therapeutic options, including coronavirus disease 2019 (COVID-19) vaccinations.

Study: Long COVID: major findings, mechanisms and recommendations. Image Credit: Ralf Liebhold/Shutterstock
Study: Long COVID: major findings, mechanisms and recommendations. Image Credit: Ralf Liebhold/Shutterstock

Long COVID refers to a multisystemic disease among SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2)-positive individuals, with increasing prevalence rates by the day. Studies have reported on long COVID risk factors, symptoms, pathophysiology, diagnosis, and treatment options, with increasing similarities between long COVID and other diseases such as POTS (postural orthostatic tachycardia syndrome) and ME/CFS (myalgic encephalomyelitis/ chronic fatigue syndrome).

About the review

In the present review, researchers explored the existing data on long COVID immunology, symptoms, pathophysiology, diagnosis, and therapeutic options.

Key long COVID findings and similarities with other diseases

Studies have reported persistently reduced exhausted T lymphocytes, dendritic cells, cluster of differentiation 4+ (CD4+) lymphocyte and CD8+ lymphocyte counts, and greater PD1 (programmed cell death protein-1) expression. In addition, increase in innate cell immunological activities, non-classical monocytes, expression of interferons (IFNs)-β, λ1, and interleukins (IL)-1β, 4,6, tumor necrosis factor (TNF). Cytotoxic T lymphocyte expansion has been linked to gastrointestinal long COVID symptoms, and persistent increase in CCL11 (C-X-C motif chemokine 11) expression has been linked to cognitive dysfunction among long COVID patients.

Elevated autoantibody titers have been reported among long COVID patients, such as autoantibodies against ACE2 (angiotensin-converting enzyme 2), angiotensin II receptor type I (AT1) receptors, β2-adrenoceptors, angiotensin 1–7 Mas receptors, and muscarinic M2 receptors. Reactivation of Epstein-Barr virus (EBV) and human herpes virus-6 (HHV-6) has been reported in long COVID patients and ME/CFS. EBV reactivation has been linked to neurocognitive impairments and fatigue in long COVID.

SARS-CoV-2 persistence reportedly drives long COVID symptoms. SARS-CoV-2 proteins and/or ribonucleic acid (RNA) have been detected in cardiovascular, reproductive, cranial, ophthalmic, muscular, lymphoid, hepatic, and pulmonary tissues, and serum, breast, urine, and stool obtained from long COVID patients. Similar immunological patterns are noted between long COVID and ME/CFS, with elevated cytokine levels in the initial two to three years of disease, followed by reduction with time, without symptomatic improvements in ME/CFS. Lower cortisol levels, mitochondrial dysfunction, post-exertional malaise, dysautonomia, mast cell activation, platelet hyperactivation, hypermobility, endometriosis, menstrual alterations, and intestinal dysbiosis occur in both conditions.

Long COVID symptoms and underlying pathophysiological mechanisms

Long COVID-associated organ damage reportedly results from COVID-19-induced inflammation and associated immune responses. Cardiovascular long COVID symptoms such as chest pain and palpitations have been associated with endothelial dysfunction, micro-clotting, and lowered vascular density. Long COVID has been associated with an increased risk of renal damage and type 2 diabetes. Ophthalmic symptoms of long COVID, including altered pupillary responses to light, result from the loss of small nerve fibers in the cornea, increased dendritic cell density, and impaired retinal microvasculature. Respiratory symptoms such as persistent cough and breathlessness result from altered pulmonary perfusion, epithelial injury, and air entrapment in the airways.

Cognitive and neurological long COVID symptoms include loss of memory, cognitive decline, sleep difficulties, paresthesia, balancing difficulties, noise and light sensitivity, tinnitus, and taste and/or smell loss. Underlying pathophysiological mechanisms include kynurenine pathway activation, endothelial injury, coagulopathy, lower cortisol levels, loss of myelin, microglial reactivation, oxidative stress, hypoxia, and tetrahydrobiopterin deficiency.  Gastrointestinal symptoms such as pain in the abdomen, nausea, appetite loss, constipation, and heartburn have been associated with elevated Bacteroides vulgatus and Ruminococcus gnavus counts and lower Faecalibacterium prausnitzii counts. Neurological symptoms often have a delayed onset, worsen with time and persist longer than respiratory and gastrointestinal symptoms, and long COVID presents similarly in children and adults.

Diagnostic and therapeutic options for long COVID, including COVID-19 vaccines

The diagnosis and treatment of long COVID are largely symptom-based, including tilt tests for POTS, magnetic resonance imaging (MRI) to detect cardiovascular and pulmonary impairments, and electrocardiograms to detect QRS complex fragmentation. Salivary tests and serological tests, including red blood cell deformation, lipid profile, complete blood count, D-dimer, and C-reactive protein (CRP) evaluations, can be performed to assess immunological biomarker levels. PCR (polymerase chain reaction) analysis is used for SARS-CoV-2 RNA detection and quantification, and antibody testing is performed to assess humoral immune responses against SARS-CoV-2.

Pharmacological treatments include intravenous Ig for immune dysfunction, low-dosage naltrexone for neuronal inflammation, beta-blockers for POTS, anticoagulants for microclot formation, and stellate ganglion blockade for dysautonomia. Other options include antihistamines, paxlovid, sulodexide, and pycnogenol. Non-pharmacological options include cognitive pacing for cognitive impairments, diet limitations for gastrointestinal symptoms, and increasing salt consumption for POTS. COVID-19 vaccines have conferred minimal protection against long COVID, the development of which depends on the causative SARS-CoV-2 variant, and the number of vaccination doses received. Long COVID has been reported more commonly post-SARS-CoV-2 Omicron BA.2 subvariant infections.

Based on the review findings, long COVID is a multiorgan disease that has debilitated several lives worldwide, for which diagnostic and therapeutic options are inadequate. The findings underscored the need for future studies, clinical trials, improved education, mass communication campaigns, policies, and funding to reduce the future burden of long COVID.

Journal reference:

Scientists pinpoint the routes taken by SARS-CoV-2 to enter and exit cells in our nasal cavity

Somebody just coughed on you. On a plane. At a dinner party. In a supermarket line.

If only there were a “morning after” nasal spray that could knock out respiratory viruses’ ability to colonize your nose and throat.

In a study publishing today in the print issue of Cell, Peter Jackson, PhD, a Stanford Medicine professor of pathology and of microbiology and immunology, and his colleagues brought that possibility closer to reality by pinpointing the routes that SARS-CoV-2, the COVID-19 virus, takes to enter and exit cells in our nasal cavity. “Our upper airways are the launchpad not only for infection of our lungs but for transmission to others,” Jackson said.

Jackson shares senior authorship of the study — the first to describe COVID-19 nasal infection in molecular detail — with Raul Andino, PhD, professor of microbiology and immunology at UC San Francisco. The lead authors are former Stanford Medicine postdoctoral scholar Chien-ting Wu, PhD, and graduate student Ran Cheng, along with UCSF postdoctoral scholars Peter Lidsky, PhD, and Yinghong Xiao, PhD.

A river runs through it

The nose and airway are lined with epithelial tissue consisting mainly of three cell types: basal cells, goblet cells and multiciliated cells, which make up about 80% of all cells in the nasal epithelium. Multiciliated cells form a protective barrier to keep viruses from entering the airway.

Jackson and his colleagues zoomed in on two structures found on multiciliated epithelial cells: cilia and microvilli. Although both are well known, neither structure has previously been implicated in how the virus enters or exits the cells lining the airway.

Cilia are spaghetti-like appendages sprouting from the outward-facing surfaces of various cells. A single nasal epithelial cell may host as many as 400 of these whiplike strands on its nasal-cavity-facing surface, all continuously beating in harmony. They’re topped by a thin layer of a protein called mucin — closely related to the key protein in mucus — and, atop that, a coat of mucus.

Mucin molecules can hook up with one another to form a mesh akin to an elastic, three-dimensional chain-link fence, preventing larger viruses such as SARS-CoV-2 from getting into upper-airway cells, Jackson said. The mucus coat entraps viral particles, bacteria, environmental debris and cell-breakdown junk and keeps underlying cells moist.

Upper-airway epithelial cilia poke through this mucus layer, their synchronized beat generating a wave that pushes the mucus and its entrapped particles along, like a slow-moving river, to where it can be expectorated or, alternatively, swallowed and digested.

Another feature common to virtually all animal cells is microvilli, smaller spikes extending from the cell surface like little fingers. Microvilli can grab and transport subcellular particles and vesicles.

You say goodbye, and I say hello

To see, close up, what happens during a nascent viral infection, Jackson and his associates used a sophisticated tissue culture method to generate what they call airway epithelial organoids, which mimic normal airways. While lacking blood vessels and immune cells, these organoids otherwise fully recapitulate the architecture of the nasal epithelium, including an intact mucus-mucin layer and well-developed multiciliated cells.

The scientists inoculated the cultures by incubating them in the same dish with SARS-CoV-2. With light and electron microscopy and immunochemical staining, they monitored the epithelial cells for viral entry, replication and exit.

Only ciliated cells became infected. Electron microscopy showed that the virus initially attaches only to cilia. Six hours after organoids were incubated with SARS-CoV-2, many virus particles were dotting the cilia’s sides from the tips down. Even 24 hours after inoculation, the virus was replicating only in a few cells. It took 48 hours for massive replication to occur.

SARS-CoV-2 needs a full day or two to start replicating full-tilt in real life, too.

Depleting the cilia, by knocking down levels of a protein critical to cilia formation in nasal epithelial cells, severely slowed down SARS-CoV-2 infection.

It’s clear that human ciliated nasal epithelial cells are the primary entry site for SARS-CoV-2 in nasal epithelial tissue.”

Peter Jackson, PhD, a Stanford Medicine professor of pathology and of microbiology and immunology

Suspecting that the delay in infection is due to the airway mucus-mucin barrier the virus has to cross, the researchers treated the airway organoids with a mucin-selective enzyme that breaks down the mucin-network mesh. It sped up virus entry at 24 hours from “barely detectable to easily detectable,” said Jackson, who concludes that eliminating mucin from this mesh prevented the mesh from blocking SARS-CoV-2 infection of the organoids.

In patients with a very rare disease called primary ciliary dyskinesia, whose ciliary beating capability is compromised or is no longer in sync, mucus flow loses its directionality.

In airway organoids generated from these patients, viral attachment to cilia resembled that seen in normal cells. At 24 hours post-inoculation, cell-infection rates were also similar to those of normal infected cells. Normal-looking microvilli bristled on cell surfaces.

But at 48 hours, SARS-CoV-2 was infecting far fewer cells overall — it could infect only the immediately surrounding cells — suggesting that once SARS-CoV-2 has started replicating within infected cells, the virus relies on adequate mucus flow to help it spread throughout the upper airways.

A May 2020 Nature Communications study, co-authored by Jackson, showed that ACE2 — the classic SARS-CoV-2-binding cell-surface molecule, or receptor — concentrates on the cilia of nasal epithelial cells. The new Cell study showed that SARS-CoV-2 bound to epithelial cilia via this receptor.

From there, Jackson said, the virus might slip past the mucus-mucin barrier in one of two ways: either by skipping down the side of cilia, hopscotch-style, from one ACE2 molecule to the next until it reaches the cell’s main body, fusing with the cell membrane there and climbing in; or by wedging its way into the cilium and riding an internal freight elevator down to the cell body.

“Once the virus gets through that barrier,” he said, “it can replicate freely in underlying cells.”

The researchers also found that SARS-CoV-2, once inside the cell, induces activity on the part of intracellular enzymes that causes microvilli to enlarge and branch, like crazy cactus plants, until their tips poke out above the mucus barrier. Their numbers increase. As soon as 24 hours post-inoculation, many altered microvilli, ordinarily less than half the length of cilia, have turned into huge, branching, tree-like structures the size of cilia or larger, and they’re decorated with attached viral particles that can shove off into the mucus-mucin layer, where they can float down the mucus river and infect other, more-distant cells.

The researchers pinpointed enzymes in the cell, massively switched on by SARS-CoV-2 infection, that were causing the microvilli’s transformation. Inhibiting these enzymes ground that aberration to a halt and greatly diminished the virus’s spread to other cells.

One spray to bind them all?

Jackson and his colleagues had similar results when they incubated airway organoids with either of two other respiratory viruses — the now-surging respiratory syncytial virus and the less-common parainfluenza virus — as well as with BA.1, a variant of the omicron strain.

Omicron is more contagious, and, as expected, it infected airway-organoid multiciliated cells more quickly than the older strain used for the other SARS-CoV-2 experiments. But inhibiting viral entry or exit in airway cells still proved effective, even for this highly infectious variant.

These viral entry mechanisms may be a general property of many respiratory viruses, Jackson said.

The findings identify new targets for a nasally applied drug that, by impeding ciliary motion or microvilli gigantism, could prevent even unknown respiratory viruses — the kind you meet, say, at a pandemic — from making themselves at home in your nose or throat.

Jackson said substances used in these experiments could perhaps be optimized for use in, say, nasal sprays soon after a respiratory viral exposure, or as prophylactics.

“Delaying viral entry, exit or spread with a locally applied, short-duration drug would help our immune systems catch up and arrive in time to stop full-blown infection and hopefully limit future pandemics,” he said.

Other researchers from UCSF, the Jikei University School of Medicine in Tokyo and the Texas Biomedical Research Institute contributed to the work.