Tag Archives: SARS

Candida auris infection without epidemiologic links to a prior outbreak

The Centers for Disease Control and Prevention (CDC) has classified Candida auris (C. auris) as an urgent public threat due to its role in elevating mortality, its ability to persist in hospital environments, and the high possibility of developing pan-drug resistance.

Notably, a recent study published in the journal Open Forum Infectious Diseases has pointed out that surfaces near patients with C. auris quickly become re-contaminated after cleaning.

Existing research has not adequately elucidated the environmental reservoirs of C. auris. Further, few studies have reported epidemiologic links associated with C. auris infection. 

Study: The Emergence and Persistence of Candida auris in Western New York with no Epidemiologic Links: A Failure of Stewardship?. Image Credit: Kateryna Kon / ShutterstockStudy: The Emergence and Persistence of Candida auris in Western New York with no Epidemiologic Links: A Failure of Stewardship? Image Credit: Kateryna Kon / Shutterstock

Background

C. auris is a species of fungus that grows as yeast. It is one of the few species of the genus Candida which cause candidiasis in humans. In the past, C. auris infection was primarily found in cancer patients or those subjected to feeding tubes.

In the United States (US), the emergence of C. auris was traced to New York, and surveillance for this fungal infection was focused mainly on New York City to detect outbreaks. Recently, scientists investigated the association between genomic epidemiology and C. auris infection in Western New York.

A Case Study

The study describes the emergence of C. auris in a patient hospitalized at a small community hospital in Genesee County, New York (NY). In January 2022, C. auris was isolated from the urine culture of a 68-year-old male on the 51st day of hospitalization.

This patient had no known epidemiological connections outside his immediate community. Before his hospitalization, he was not exposed to other patients or family members associated with C. auris infection.

This patient had no history of organ transplantation, decubitus ulcers, hemodialysis, feeding tubes, or nursing home stays. He had an active lifestyle with a history of mild vascular dementia. He was hospitalized due to pneumonia and was prescribed azithromycin treatment.

Post hospitalization, he tested positive for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and was treated with dexamethasone (6 mg) daily for 10 days and remdesivir (200 mg) once, followed by 100 mg daily for five days.

Since the patient’s chest radiograph showed left lobar consolidation, he was further treated with empiric ceftriaxone and azithromycin. As the respiratory symptoms deteriorated, he received non-invasive positive pressure ventilation, with subsequent endotracheal intubation for eight days. He was successfully extubated. He developed a fever and received antimicrobial therapy for 73 days. The patient had a urinary catheter and a peripherally inserted central line in his arm for 35 days. 

Microbiology culture test and serum procalcitonin levels remained negative and within normal levels. On the 22nd day of hospitalization, Candida albicans were isolated from respiratory samples. On the 51st day, the urine culture revealed the presence of azole-resistant C. auris.

The isolated C. auris (MRSN101498) was forwarded to the Multidrug-resistant organism Repository and Surveillance Network (MRSN), where genomic sequencing was performed. After the patient was discharged, the hospital room was cleaned using hydrogen peroxide and peracetic acid, followed by ultraviolet-C light. Other patients who shared rooms with the patient with C. auris were tested for infection.

Study Outcomes

C. auris was not detected in the Western NY community hospital in the past year. Physicians stated that the patient received excessive antibiotic treatment for a prolonged period. Genomic studies revealed that the MRSN101498 genome sequence was closely related to the 2013 Indian strain with minor genomic differences. Interestingly, the K143R mutation in ERG11 was found in MRSN101498, which is associated with triazole resistance in Candida albicans.

Whole genome single nucleotide polymorphism (SNP) analysis also highlighted that MRSN101498 was strongly genetically related to four other isolates, with marginal differences.

These isolates were linked to an outbreak in March 2017 in a hospital 47 miles northeast of Rochester, NY. Based on the current findings, it is highly likely that isolates from Western NY share a recent common ancestor.

Study Importance

This case study is important for several reasons, including the absence of epidemiologic links to C.auris infection. Since reports from rural sectors are rare, this study addresses a vital surveillance ‘blind spot.’ 

However, the current study failed to identify the potential reservoirs of MRSN101498 in Western NY. Sporicidal disinfectants were inefficient for both Clostridioides difficile and C. auris. However, terminal cleaning protocols that included UV irradiation and sporicidal cleaning agents were able to eradicate C. auris effectively.

The current study highlights the role of excessive antibiotic exposure in the emergence of C. auris. It also indicates the challenges in eliminating fungi from hospital settings. The authors recommend proper antibiotic treatment and cleaning procedures for drug-resistant pathogens.

Journal reference:

Low-cost, universal oral COVID-19 vaccine prevents severe respiratory illness in hamsters

A UCLA-led team has developed an inexpensive, universal oral COVID-19 vaccine that prevented severe respiratory illness and weight loss when tested in hamsters, which are naturally susceptible to SARS-CoV-2. It proved as effective as vaccines administered by injection or intranasally in the research.

If ultimately approved for human use, it could be a weapon against all COVID-19 variants and boost uptake, particularly in low- and middle-income countries, and among those with an aversion to needles.

The study is published in the peer-reviewed journal Microbiology Spectrum.

The oral vaccine is based primarily on the nucleocapsid protein, which is the most abundantly expressed of the virus’s four major structural proteins and evolves at a much slower rate than the frequently mutating spike protein. The vaccine utilizes a highly weakened bacterium to produce the nucleocapsid protein in infected cells as well as the membrane protein, which is another highly abundant viral structural protein.

Being a universal vaccine based primarily upon the nucleocapsid protein, the vaccine is resistant to the incessant mutations of the SARS-CoV-2 spike protein upon which virtually all current vaccines are based. As a result, current vaccines rapidly become obsolete, requiring that they repeatedly be re-engineered. Hence, our vaccine should protect against new and emerging variants of SARS-CoV-2.”

Dr. Marcus Horwitz, senior author, distinguished professor of medicine in the Division of Infectious Diseases and of microbiology, immunology and molecular genetics at the David Geffen School of Medicine at UCLA

Oral delivery also makes it easier to distribute the vaccine in resource poor areas of the world by eliminating the need for needles, syringes, and trained personnel to deliver injectable vaccines, he added. “An oral vaccine may also be attractive to many people with vaccine hesitancy on account of fear of needles.”

The researchers noted that while it worked exceptionally well in preventing severe respiratory illness, it did not provide full protection against high viral loads in the hamsters. Also, they did not test it against the Omicron strain, which contains a nearly identical nucleocapsid protein, because of this strain’s low virulence in the golden Syrian hamsters they used.

But the vaccine, they write, “is efficacious when administered via the oral route against COVID-19-like disease in a highly demanding animal model. This conveniently administered, easily manufactured, inexpensive, and readily stored and transported vaccine could play a major role in ending the COVID-19 pandemic by protecting immunized individuals from serious disease from current and future strains of SARS-CoV-2.”

The next step in the process will be to manufacture the vaccine for oral administration via an acid-resistant enteric capsule that will allow the vaccine to be safely released in the small intestine, Horwitz said. It will then be tested for safety, immunogenicity, and efficacy in humans.

“We also plan to expand the vaccine to protect against infections caused by other types of potentially pandemic coronaviruses such as the virus that causes Middle Eastern Respiratory Syndrome (MERS),” he added.

Additional authors are Qingmei Jia and Saša Masleša-Galić of UCLA; Helle Bielefeldt-Ohmann of the University of Queensland, Australia; and Rachel Maison, Airn Hartwig, and Richard Bowen of Colorado State University.

This study was supported by a Corona Virus Seed grant from the UCLA AIDS Institute and Charity Treks and by the National Institutes of Health (AI141390).

Source:
Journal reference:

Jia, Q., et al. (2023). Oral Administration of Universal Bacterium-Vectored Nucleocapsid-Expressing COVID-19 Vaccine is Efficacious in Hamsters. Microbiology Spectrum. doi.org/10.1128/spectrum.05035-22.

Co-infection with MRSA ‘superbug’ could make COVID-19 outcomes even more deadly

Global data shows nearly 10 per cent of severe COVID-19 cases involve a secondary bacterial co-infection – with Staphylococcus aureus, also known as Staph A., being the most common organism responsible for co-existing infections with SARS-CoV-2. Researchers at Western have found if you add a ‘superbug’ – methicillin-resistant Staphylococcus aureus (MRSA) – into the mix, the COVID-19 outcome could be even more deadly.

The mystery of how and why these two pathogens, when combined, contribute to the severity of the disease remains unsolved. However, a team of Western researchers has made significant progress toward solving this “whodunit”.

New research by Mariya Goncheva, Richard M. Gibson, Ainslie C. Shouldice, Jimmy D. Dikeakos and David E. Heinrichs, has revealed that IsdA, a protein found in all strains of Staph A., enhanced SARS-CoV-2 replication by 10- to 15-fold. The findings of this study are significant and could help inform the development of new therapeutic approaches for COVID-19 patients with bacterial co-infections.

Interestingly, the study, which was recently published in iScience, also showed that SARS-CoV-2 did not affect the bacteria’s growth. This was contrary to what the researchers had initially expected.

We started with an assumption that SARS-CoV-2 and hospitalization due to COVID-19 possibly caused patients to be more susceptible to bacterial infections which eventually resulted in worse outcomes.”

Mariya Goncheva

Goncheva is a former postdoctoral associate, previously with the department of microbiology and immunology at Schulich School of Medicine & Dentistry.

Goncheva said bacterial infections are most commonly acquired in hospital settings and hospitalization increases the risk of co-infection. “Bacterial infections are one of the most significant complications of respiratory viral infections such as COVID-19 and Influenza A. Despite the use of antibiotics, 25 per cent of patients co-infected with SARS-CoV-2 and bacteria, die as a result. This is especially true for patients who are hospitalized, and even more so for those in intensive care units. We were interested in finding why this happens,” said Goncheva, lead investigator of the study.

Goncheva, currently Canada Research Chair in virology and professor of biochemistry and microbiology at the University of Victoria, studied the pathogenesis of multi-drug resistant bacteria (such as MRSA) supervised by Heinrichs, professor of microbiology and immunology at Schulich Medicine & Dentistry.

When the COVID-19 pandemic hit, she pivoted to study interactions between MRSA and SARS-CoV-2.

For this study, conducted at Western’s level 3 biocontainment lab, Imaging Pathogens for Knowledge Translation (ImPaKT), Goncheva’s work created an out-of-organism laboratory model to study the interactions between SARS-CoV-2 and MRSA, a difficult-to-treat multi-drug resistant bacteria.

“At the beginning of the pandemic, the then newly opened ImPaKT facility made it possible for us to study the interactions between live SARS-CoV-2 virus and MRSA. We were able to get these insights into molecular-level interactions due to the technology at ImPaKT,” said Heinrichs, whose lab focuses on MRSA and finding drugs to treat MRSA infections. “The next step would be to replicate this study in relevant animal models.”

Source:
Journal reference:

Goncheva, M. I., et al. (2023). The Staphylococcus aureus protein IsdA increases SARS CoV-2 replication by modulating JAK-STAT signaling. IScience. doi.org/10.1016/j.isci.2023.105975.

SARS-CoV-2 infection damages the CD8+ T cell response to vaccination

The magnitude and quality of a key immune cell’s response to vaccination with two doses of the Pfizer-BioNTech COVID-19 vaccine were considerably lower in people with prior SARS-CoV-2 infection compared to people without prior infection, a study has found. In addition, the level of this key immune cell that targets the SARS-CoV-2 spike protein was substantially lower in unvaccinated people with COVID-19 than in vaccinated people who had never been infected. Importantly, people who recover from SARS-CoV-2 infection and then get vaccinated are more protected than people who are unvaccinated. These findings, which suggest that the virus damages an important immune-cell response, were published today in the journal Immunity.

The study was co-funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and led by Mark M. Davis, Ph.D. Dr. Davis is the director of the Stanford Institute for Immunity, Transplantation and Infection and a professor of microbiology and immunology at Stanford University School of Medicine in Palo Alto, California. He is also a Howard Hughes Medical Institute Investigator.

Dr. Davis and colleagues designed a very sensitive tool to analyze how immune cells called CD4+ T cells and CD8+ T cells respond to SARS-CoV-2 infection and vaccination. These cells coordinate the immune system’s response to the virus and kill other cells that have been infected, helping prevent COVID-19. The tool was designed to identify T cells that target any of dozens of specific regions on the virus’s spike protein as well as some other viral regions. The Pfizer-BioNTech vaccine uses parts of the SARS-CoV-2 spike protein to elicit an immune response without causing infection.

The investigators studied CD4+ and CD8+ T-cell responses in blood samples from three groups of volunteers. One group had never been infected with SARS-CoV-2 and received two doses of the Pfizer-BioNTech COVID-19 vaccine. The second group had previously been infected with SARS-CoV-2 and received two doses of the vaccine. The third group had COVID-19 and was unvaccinated.

The researchers found that vaccination of people who had never been infected with SARS-CoV-2 induced robust CD4+ and CD8+ T-cell responses to the virus’ spike protein. In addition, these T cells produced multiple types of cell-signaling molecules called cytokines, which recruit other immune cells—including antibody-producing B cells—to fight pathogens. However, people who had been infected with SARS-CoV-2 prior to vaccination produced spike-specific CD8+ T cells at considerably lower levels—and with less functionality—than vaccinated people who had never been infected. Moreover, the researchers observed substantially lower levels of spike-specific CD8+ T cells in unvaccinated people with COVID-19 than in vaccinated people who had never been infected.

Taken together, the investigators write, these findings suggest that SARS-CoV-2 infection damages the CD8+ T cell response, an effect akin to that observed in earlier studies showing long-term damage to the immune system after infection with viruses such as hepatitis C or HIV. The new findings highlight the need to develop vaccination strategies to specifically boost antiviral CD8+ T cell responses in people previously infected with SARS-CoV-2, the researchers conclude.  

Source:
Journal reference:

Gao, F., et al. (2023). Robust T cell responses to Pfizer/BioNTech vaccine compared to infection and evidence of attenuated peripheral CD8+ T cell responses due to COVID-19. Immunity. doi.org/10.1016/j.immuni.2023.03.005.

New SARS-CoV-2 Omicron XBB.1.5 variant has high transmissibility and infectivity, study finds

COVID-19 has caused significant global panic after its rapid emergence more than 3 years ago. Although we now have highly effective vaccines against the SARS-CoV-2 virus, which causes COVID-19, scientists continue to study emerging SARS-CoV-2 variants in order to safeguard public health and devise global preventive strategies against emerging variants. A team led by Japanese researchers has recently discovered that the SARS-CoV-2 Omicron XBB.1.5 variant, prevalent in the Western hemisphere, has high transmissibility and infectivity.

New SARS-CoV-2 Omicron XBB.1.5 variant has high transmissibility and infectivity, study finds
New SARS-CoV-2 variant may jeopardize public health across the globe. The SARS-CoV-2 Omicron XBB.1.5 variant spreads rapidly and is more infectious than its historic precursor. Image Credit: The University of Tokyo

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for millions of deaths worldwide. Although scientists have designed novel vaccines to counter COVID-19, they are constantly on the lookout for emerging variants that can bypass vaccine resistance and potentially jeopardize global public health. A team led by Japanese researchers has recently been successful in characterizing the new SARS-CoV-2 Omicron XBB.1.5 variant, which was first detected in October 2022. Their findings were published on January 31, 2023 in volume 23 of The Lancet Infectious Diseases.​​​

Says senior author Prof. Kei Sato from the Division of Systems Virology, The Institute of Medical Science, The University of Tokyo, Japan, “Because the Omicron XBB.1.5 variant can spread more rapidly than previous variants and has a potential to cause the next epidemic surge, we should carefully monitor it to safeguard public health.”

While studying emerging variants of the SARs-CoV-2 Omicron lineage, the research team made a startling discovery: the SARS-CoV-2 Omicron XBB.1.5 variant has a novel mutation in the spike (S) protein—the protein that anchors the virus firmly to the human angiotensin converting enzyme-2 (ACE2) receptor, thus facilitating the invasion of human cells. The serine-to-proline amino acid mutation noted at residue no. 486 in the S protein is virologically concerning because of a variety of reasons.

Sharing his concerns, first author Keiya Uriu from the Division of Systems Virology, Department of Microbiology and Immunology, The University of Tokyo, Japan, says, “In late 2022, the SARS-CoV-2 Omicron BQ.1 and XBB lineages, characterized by amino acid substitutions in the S protein and increased viral fitness, had become predominant in the Western and Eastern Hemisphere, respectively. In 2022, we elucidated the characteristics of a variety of newly emerging SARS-CoV-2 Omicron subvariants. At the end of 2022, the XBB.1.5 variant, a descendant of XBB.1 that acquired the S:S486P substitution, emerged and was rapidly spreading in the USA.”

To gain mechanistic insights into the infectivity, transmissibility, and immune response associated with XBB.1.5, the team conducted a series of experiments. For instance, upon conducting epidemic dynamics analysis—statistical modeling that facilitates the analysis of the general characteristics of any epidemic—the team realized that the relative effective reproduction number (Re) of XBB.1.5 was 1.2-fold greater than that of the parental XBB.1. This indicated that an individual with the XBB.1.5 variant could infect 1.2 times more people in the population than someone with the parental XBB.1 variant. Moreover, the team also realized that, as of December 2022, XBB.1.5 was rapidly outcompeting BQ.1.1, the predominant lineage in the United States.

Co-first-author Jumpei Ito from the Division of Systems Virology, remarks, “Our data suggest that XBB.1.5 will rapidly spread worldwide in the near future.”

The team also studied the virological features of XBB.1.5 to determine how tightly the S protein of the new variant interacts with the human ACE2 receptor. To this end, the researchers conducted a yeast surface display assay. The results showed that the dissociation constant (KD) corresponding to the physical interaction between the XBB.1.5 S receptor-binding domain (RBD) and the human ACE2 receptor is significantly (4.3-fold) lower than that for XBB.1 S RBD. “In other words, the XBB.1.5 variant binds to human ACE2 receptor with very high affinity,” explains Shigeru Fujita from the Division of Systems Virology.

Further experiments using lentivirus-based pseudoviruses also showed that XBB.1.5 had approximately 3-fold higher infectivity than XBB.1. These results suggest that XBB.1.5 exhibits a remarkably strong affinity to the human ACE2 receptor, which can be attributed to the S486P substitution.

The study by Prof. Sato and his team led to another important discovery from an immunization perspective. The XBB.1.5 S protein was found to be highly resistant to neutralization antibodies elicited by breakthrough infection with the BA.2/BA.5 subvariants. In other words, patients with prior infection from the BA.2/BA.5 subvariants may not show robust immunity against XBB.1.5, increasing their chances of infection and disease.

The results of our virological experiments explain why the Omicron XBB.1.5 variant has a higher transmissibility than past variants: This variant acquired strong binding ability to human ACE2 while maintaining a higher ability to escape from neutralizing antibodies.”

​​​​​​​Yusuke Kosugi, Division of Systems Virology, Department of Microbiology and Immunology, The University of Tokyo, Japan

Contributing members of The Genotype to Phenotype Japan (G2P-Japan) Consortium conclude, “The SARS-CoV-2 Omicron XBB.1.5 variant does show enhanced transmissibility. Although few cases have been detected in the Eastern hemisphere, it could become a looming threat. Imminent prevention measures are needed.”

​​​​​​​Thanks to the research team for the early warning! Meanwhile, we must continue adopting safe practices to defend ourselves from XBB.1.5. 

Source:
Journal reference:

Uriu, K., et al. (2023) Enhanced transmissibility, infectivity, and immune resistance of the SARS-CoV-2 omicron XBB.1.5 variant. The Lancet Infectious Diseases. doi.org/10.1016/S1473-3099(23)00051-8.

Real-world data on the effectiveness of Sotrovimab as a prophylactic against COVID-19

*Important notice: medRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

In a recent study posted in the medRxiv* preprint server, scientists assessed the efficacy of sotrovimab for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) treatment.

Emerging SARS-CoV-2 variants have lowered the fold change in half maximal effective concentration (EC50) for the SARS-CoV-2 Omicron BA.2 sublineage and subsequent sublineages. Yet, the association between this decrease and clinical efficacy outcomes is unknown. With a lack of clinical trials evaluating the efficacy of sotrovimab against novel variants, real-world evidence becomes an essential data source.

Study: Real-world effectiveness of sotrovimab for the treatment of SARS-CoV-2 infection during Omicron BA.2 subvariant predominance: a systematic literature review. Image Credit: Cryptographer / ShutterstockStudy: Real-world effectiveness of sotrovimab for the treatment of SARS-CoV-2 infection during Omicron BA.2 subvariant predominance: a systematic literature review. Image Credit: Cryptographer / Shutterstock

About the study

In the present study, researchers assessed the efficacy of sotrovimab on severe coronavirus disease 2019 (COVID-19) outcomes throughout the period of the prevalence of the SARS-CoV-2 Omicron BA.2 subvariant.

This systematic literature review (SLR) comprised observational papers assessing clinical outcomes as well as the viral load in sotrovimab-treated patients, which were published between 1 January 2022 and 3 November 2022 in preprint articles, peer-reviewed journal publications, and conference abstracts. To identify data related to Omicron BA.2 and the following subvariants, the team chose a suitable publication period for the systematic review.

The following electronic databases were searched on 3 November 2022: MEDLINE, LitCovid, Embase, EcoLit, and Cochrane COVID-19 Study Registry. Further searches were undertaken in medRvix, bioRvix, arRvix, xhemRvix, Preprints.org, SSRN, and ResearchSquare for relevant preprints. In addition, relevant abstracts from the following conferences were indexed beginning in January 2022: Infectious Diseases Week, International Conference on Emerging Infectious Diseases, European Respiratory Society, and European Congress of Clinical Microbiology and Infectious Diseases.

Data extraction from the listed studies was conducted by a single extractor using a Microsoft Excel-designed data extraction file. Information extracted included the study’s title and citation, data source, study design and details, country, number of patients, study population, data collection period and circulating SARS-CoV-2 variants, duration of follow-up, key baseline features, and clinical outcomes. The clinical outcomes taken into account for the study included hospital admission, intensive care admission, respiratory support, emergency department visits, mortality, COVID-19 progression, the relative and absolute change in viral load observed during the acute phase after sotrovimab therapy, and the number of patients having undetectable viral load after sotrovimab treatment.

Results

Initial searches of electronic databases generated 257 studies. Another 263 studies were found by searching preprints, conference abstracts, and citation chasing from appropriate SLRs. After removing duplicates, 343 unique abstracts and titles were evaluated, of which 89 were deemed eligible for full-text review. Five observational trials reporting viral load or clinical outcome data associated with sotrovimab during the era of BA.2 predominance were deemed appropriate for inclusion in the present SLR.

Point estimates for hospitalization or mortality (as a composite endpoint) or clinical progression for sotrovimab-treated patients. a95 CIs calculated via Clopper-Pearson methods using reported data. bDefined as March through April 2022 in source and assumes homogeneity in the distribution of SARS-CoV-2 variants across all US states. cOnly COVID-19-specific outcome shown; all-cause outcome also reported in source. dHospitalizations were COVID-19-specific; deaths could be due to any cause. CI confidence interval

Point estimates for hospitalization or mortality (as a composite endpoint) or clinical progression for sotrovimab-treated patients. a95 CIs calculated via Clopper-Pearson methods using reported data. bDefined as March through April 2022 in source and assumes homogeneity in the distribution of SARS-CoV-2 variants across all US states. cOnly COVID-19-specific outcome shown; all-cause outcome also reported in source. dHospitalizations were COVID-19-specific; deaths could be due to any cause. CI confidence interval

The number of patients reporting hospitalization or fatality due to COVID-19 was consistently low for all investigations and periods of the prevalence of Omicron BA.1 and BA.2 variants. COVID-19-related hospital admission or mortality rates were between 1.0% and 3.1% for sotrovimab-treated patients during Omicron BA.1 prevalence and from 1.0% and 3.6% when BA.2 was predominant. The number of patients who reported hospitalization and mortality due to all causes ranged from 2.1% to 2.7% for the BA.1 predominance era, and from 1.7% to 2.0% for the BA.2 era. During Omicron BA.1 predominance, COVID-19-related mortality was projected to be 0.21% for the sotrovimab group versus 0.67% for the molnupiravir group, and 0.15% versus 0.96% for the BA.2 era, respectively.

During the BA.1 and BA.2 subvariant surges, sotrovimab was associated with a significantly decreased incidence of 28-day SARS-CoV-2-related hospital admission or fatality compared to molnupiravir. After statistical adjustment for demographics, vaccination status, high-risk cohort categories, body mass index, calendar time, and other comorbidities, the findings indicated that sotrovimab was associated with a significantly lower risk of COVID-19-related hospital admission or mortality compared to molnupiravir during the BA.1 and BA.2 periods.

During the BA.2 subvariant surge, sotrovimab was linked with a decreased risk of 30-day hospitalization or mortality from all causes compared to no mAb treatment. In March 2022, sotrovimab was considerably more successful than non-mAb-treated patients, with an adjusted reduction of 59% in relative risk and a propensity score-matched relative risk reduction of 64% with respect to 30-day all-cause hospital admission or mortality. Similar risks of hospitalization were associated with BA.1 and BA.2 patients treated with sotrovimab.

Conclusion

The study findings showed that sotrovimab continued to be clinically effective in mitigating severe clinical outcomes associated with SARS-CoV-2 infections during the period of SARS-CoV-2 Omicron BA.2 predominance compared to the control/comparator and relative to Omicron BA.1 predominance. During Omicron BA.1 and BA.2 subvariant predominance, the studies consistently reported low rates of poor clinical outcomes in individuals treated with sotrovimab.

*Important notice: medRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Journal reference:

Study finds community-onset bacterial coinfection in children with critical COVID-19 is infrequent but empiric antibiotics are commonly prescribed

In a recent study published in Open Forum Infectious Diseases, researchers evaluated the use of empiric antibiotics to determine the prevalence rates of community-acquired bacterial coinfections among hospitalized pediatric critical coronavirus disease 2019 (COVID-19) patients and to identify opportunities for de-escalating antibiotic usage in case of no bacteria-caused sepsis among high-risk individuals, and those presenting with shock.

Study: Community-onset bacterial coinfection in children critically ill with SARS-CoV-2 infection. Image Credit: nokwalai/Shutterstock
Study: Community-onset bacterial coinfection in children critically ill with SARS-CoV-2 infection. Image Credit: nokwalai/Shutterstock

Background

Community-acquired bacterial coinfections among hospitalized adult coronavirus disease 2019 (COVID-19) patients are uncommon; however, empiric antibiotic usage is reportedly high. Data on empiric antibiotic usage and bacterial coinfections among pediatric individuals with critical severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are limited.

The clinical manifestations of severe SARS-CoV-2 infections often include pulmonary distress and fever, findings that could be difficult to discriminate from serious bacterial infections, which might prompt the use of empiric antibiotics in the initial days of hospitalization, particularly among high-risk individuals.

About the study

In the present study, researchers investigated whether any radiographic, laboratory, or clinical features ascertainable during hospitalization were related to empiric antibiotic usage or were estimative of bacterial coinfections acquired in community settings.

The team evaluated individuals below 19.0 years and admitted to pediatric high-acuity units (HAU) or intensive care units (ICU) due to SARS-CoV-2 infections from March 2020 to December 2020. On the basis of microbiology reports from the initial 72 hours of hospitalization, the team adjudicated if patients had community-acquired bacterial coinfections.

Clinical and demographic variables of individuals with and without antibiotic prescriptions and bacterial coinfections in the initial days of hospitalization were compared. Poisson regression modeling was performed to assess factors related to the outcome, and the adjusted relative risk (aRR) values were calculated.

Data were obtained from patient electronic medical records and data from the nationwide overcoming COVID-19 population health active surveillance registry of patients hospitalized due to COVID-19-associated complications between 15 March 2020 and 31 December 2020 across >70.0 pediatric hospitals in 25 states.

COVID-19 diagnosis was confirmed using polymerase chain reaction (PCR). The team excluded multisystem inflammatory syndrome among children (MIS-C) patients diagnosed using the Centers for Disease Control and Prevention (CDC) criteria. Data were obtained on demographic parameters, clinical symptoms and signs, comorbidities, radiographical and laboratory investigations, and data on antibiotics prescribed at admission and the course of critical COVID-19, including clinical outcomes and hemodynamic and respiratory support needed.

The primary study outcome assessed was the prescriptions of empirical antimicrobials, for which enteral or intravenous antimicrobials administered in the initial two days of hospital admission were assessed. The second outcome evaluated community-acquired bacterial infection presence, for which relevant case report form (CRF) information from individuals with SARS-CoV-2-positive microbiological cultures, and PCR, were analyzed in the initial 72 hours of hospital admission.

Results

Out of 532 individuals, 63.0% were administered empiric antibiotics; however, only seven percent developed bacterial coinfections, of which only three percent were respiratory-type. Empirical antibiotics had a greater likelihood of being prescribed to immunosuppressed individuals (aRR of 1.3), requiring non-mechanical ventilator-type respiratory aid (aRR of 1.4), or requiring invasive-type mechanical ventilators (aRR of 1.8), than no respiratory aid.

The most frequently prescribed antimicrobials were ceftriaxone (41%) and vancomycin (28%), followed by cefepime (20%). Most individuals were prescribed multiple antimicrobials, with 21%, 10%, and 18% receiving 2.0, 3.0, and ≥4.0 antibiotics in the initial two days of hospital admission. More than 33% of individuals received antibiotics for ≥5.0 days, despite no evidence of bacterial coinfections. The median social vulnerability index (SVI) values were significantly greater among those who received antibiotics than those who did not.

The median C-reactive protein (CRP) levels were greater among those who received antibiotics versus those who did not (4.6 mg per dL vs. 2.2 mg per dL), as were the median procalcitonin levels (0.4 ng per mL vs. 0.1 ng per mL). The median leukocyte counts showed no significant differences between the two groups. Antibiotic usage was related to COVID-19 severity, indicated by greater median values for PEdiatric Logistic Organ Dysfunction-2 (PELOD-2) scores at hospitalization among individuals who received antibiotics than those who did not.

Seven percent (n=38) of individuals had true community-onset bacterial coinfections, of which 13, 16, 8.0, and 4.0 were bloodstream infections, respiratory infections, urinary tract infections, and bacterial infections at other sites (peritonitis, colitis, meningitis, and pharyngitis), respectively.

No particular pathogenic organism predominantly caused bacterial coinfections, although most pulmonary coinfections were caused by Staphylococcus aureus and/or Pseudomonas aeruginosa. Greater PELOD-2 scores at admission were associated with bacterial coinfections (aRR of 1.2), in addition to age, sex, and pulmonary conditions other than asthma (aRR 2.3).

Conclusion

Overall, the study findings showed that community-onset bacterial coinfections among children with critical COVID-19 are not frequent; however, empiric antibiotics are usually prescribed. The study findings inform antibiotic use and underpin swift de-escalation in case assessments indicating that coinfections are not likely.

Journal reference:

Study finds unique epigenetic biosignature in individuals with post-COVID syndrome

A reprogramming of which genes are active, and which are not, is visible in post-COVID sufferers. This is shown in a study from Linköping University, Sweden, on a small group of individuals. The researchers can see that genes associated with taste and smell, as well as cell metabolism, are affected in individuals with post-COVID syndrome. These findings may ultimately contribute to the development of new diagnostic tools for this and similar diseases.

There are many external factors that can affect which of all the genes in a cell are used at a certain point in time. The body’s ability to switch genes on and off contributes to our ability to adapt to various conditions. This gene use regulation is called epigenetics.

One of the regulation mechanisms entails that a small chemical group, a methyl group, is switched on and removed from the DNA strand. Reduced methylation of a gene may be a sign of it becoming easier for the cell to read and use, whereas high methylation most often means that the gene is not used. The researchers in Maria Lerm’s research group at Linköping University have previously found that exposure to the tuberculosis bacteria is visible in individuals’ DNA by looking at certain epigenetic changes.

In their new study, published in Clinical Epigenetics, the researchers studied blood samples from ten individuals having had persistent post-COVID symptoms for more than 12 weeks. The most common symptoms were a feeling of not being able to draw in enough air, palpitations, muscle weakness and loss of smell and taste.

These individuals were compared with two other groups: healthy COVID-19 convalescents, and individuals who had not had COVID-19 when the samples were taken. The researchers measured the methylation pattern on 850,000 sites of the DNA and then used an algorithm that can find data similarities and differences. It turned out that the three groups differed from each other and had distinct methylation profiles. The researchers then identified the genes that differ in methylation patterns between the groups.

“We have found that, for example, signaling pathways that control taste and smell have been affected. This confirms that the epigenetic differences may in fact be associated with the set of symptoms and be physiologically relevant,” says Maria Lerm, Professor of Medical Microbiology at the Department of Biomedical and Clinical Sciences, BKV, at Linköping University.

A previous study conducted by the research group concerned individuals who had recently recovered from COVID-19 and who showed a similar epigenetic reprogramming of signaling pathways associated with taste and smell.

In their new study, the researchers also found epigenetic changes in what is known as the angiotensin-2 system in post-COVID sufferers. This could be biologically relevant as the coronavirus which causes COVID-19, i.e., the SARS-CoV-2 virus, uses the angiotensin-2 system to enter and infect cells.

One of several conditions similar to post-covid is chronic fatigue syndrome, CFS, which is also known as myalgic encephalomyelitis, ME.

“One important finding is that we can see that the cells’ energy factories, the mitochondria, are affected in the post-COVID group. Other studies have shown that the cells’ energy factories have also been affected in cases of chronic fatigue,” says Maria Lerm.

There is currently no test that doctors can use to decide whether a person has post-COVID syndrome. The researchers are hoping that their recent findings can contribute to the development of diagnostic tools for health care providers, tools that might perhaps even make it possible to distinguish post-COVID from similar conditions.

The study was financed with support from the Swedish Heart Lung Foundation and the Swedish Research Council. The methylation pattern of study participants’ DNA was analyzed at Clinical Genomics, a SciLifeLab platform at Linköping University and Region östergötland.

Source:
Journal reference:

Defining post-acute COVID-19 syndrome (PACS) by an epigenetic biosignature in peripheral blood mononuclear cells, Frida Nikesjö, Shumaila Sayyab, Lovisa Karlsson, Eirini Apostolou, Anders Rosén, Kristofer Hedman and Maria Lerm, (2022), Clinical Epigenetics 14:172, published online on 14 December 2022 https://doi.org/10.1186/s13148-022-01398-1

New analysis shows how convalescent plasma can be used as effective, low-cost COVID-19 treatment

Three years into the COVID-19 pandemic, new variant outbreaks continue to fuel economic disruptions and hospitalizations across the globe. Effective therapies remain unavailable in much of the world, and circulating variants have rendered monoclonal antibody treatments ineffective. But a new analysis shows how convalescent plasma can be used as an effective and low-cost treatment both during the COVID-19 pandemic and in the inevitable pandemics of the future.

In astudy published in Clinical Infectious Diseases, an international team of researchers analyzed clinical data and concluded that among outpatients with COVID-19, antibodies to SARS-CoV-2 given early and in high dose reduced the risk of hospitalization.

If the results of this meta-analysis had somehow been available in March of 2020, then I am certain that millions of lives would have been saved around the world.”

Dr. Adam C. Levine, study author, professor of emergency medicine at Brown University’s Warren Alpert Medical School

While several other early treatments for COVID-19 have had similar results, including antivirals like Paxlovid and monoclonal antibodies, only convalescent plasma, the researchers concluded, is likely to be both available and affordable for the majority of the world’s population both now and early in the next viral pandemic.

“These findings will be helpful for this pandemic, especially in places like China, India and other parts of the world that lack access to antiviral medications like Paxlovid,” Levine said. “And because it provides information on how to more effectively use convalescent plasma as a therapy, this will be even more helpful in the next pandemic. This study is essentially a roadmap for how to do this right the next time.”

Blood plasma from people who have recovered from COVID-19 and contains antibodies against SARS-CoV-2 was used as a treatment early in the pandemic, Levine said -; months before monoclonal antibody treatment or vaccines became available, and more than a year before an effective oral drug therapy was clinically available.

Although convalescent plasma seemed promising, outpatient research was limited, and studies that did exist showed mixed results. One problem was that most studies were conducted in patients already hospitalized with COVID-19, Levine said, largely due to the convenience of conducting research with this population. The objective in the new study was to review all available randomized controlled trials of convalescent plasma in non-hospitalized adults with COVID-19 to determine whether early treatment can reduce the risk of hospitalization.

The analysis included data from five studies conducted in four countries, including Argentina, the Netherlands, Spain, and two in the United States. Levine previously supervised enrollment at Rhode Island Hospital in a clinical trial led by Johns Hopkins Medicine and Johns Hopkins Bloomberg School of Public Health. Across the five studies, a total of 2,620 adult patients had received transfusions of convalescent plasma from January 2020 to September 2022. The researchers conducted an individual participant data meta-analysis to assess how the transfusion timing and dose impacted the patient’s risk of hospitalization during the 28 days after infection.

In their analysis, the researchers found that 160 (12.2%) of 1,315 control patients were hospitalized compared with 111 (8.5%) of 1,305 patients treated with COVID-19 convalescent plasma -; 30% fewer hospitalizations.

Notably, the strongest effects were seen in patients treated both early in the illness and with plasma with high levels of antibodies. In these patients, the reduction in hospitalization was over 50%.

For future pandemics, the goal is to use plasma from donors who have high levels of antibodies, said corresponding study author Dr. David J. Sullivan, a professor of molecular microbiology and immunology at Johns Hopkins Bloomberg School of Public Health and School of Medicine. “This research suggests that we have been underdosing convalescent plasma for many previous pathogens, which impacts effectiveness,” Sullivan said. “It bears repeating: Early and high levels of antibodies increased the beneficial efficacy.”

Levine explained that because convalescent plasma was the only treatment available at the beginning of the pandemic, it was used widely -; and often incorrectly, on hospitalized patients who were already experiencing severe symptoms late in the course of COVID-19. Those symptoms were due to a ramped-up immune response to the virus, not the virus itself, Levine explained.

“By the time the patient was at the point where they’d reached the inflammatory phase that caused severe symptoms, it was too late for treatments like convalescent plasma or even monoclonal antibodies to work,” he said.

What is now known is that convalescent plasma works best when given early in the course of illness. That’s when it can neutralize the virus and get ahead of the body mounting an intense immune response, thereby preventing hospitalization and death, Levine said.

The five drug treatment trials in the analysis took place at a variety of global health care sites, he noted, including nursing homes, outpatient clinics and emergency departments. The diversity across the studies is a sign that the data is likely generalizable to many other types of populations and settings around the world, said Levine, who also directs the Center for Human Rights and Humanitarian Studies at the Watson Institute for International and Public Affairs at Brown.

Levine cited another recently published study in JAMA Network Open that showed that convalescent plasma is effective in reducing mortality in immunocompromised patients. This new meta-analysis provides evidence that convalescent plasma can also be effective in the larger population of adults who are not immunocompromised.

The U.S. Food and Drug Administration allowed early convalescent plasma use in December 2021 for those patients with COVID-19 who were also immunocompromised, but not yet for patients with COVID-19 who are not immunocompromised. The authors said they hope the new study will push the FDA, and other countries around the world, to make early treatment with COVID-19 convalescent plasma available to a much larger group of patients at risk for hospitalization.

A treatment that evolves with the pandemic

The findings come at a time when monoclonal antibodies, the most commonly used treatment for COVID-19, have been shown to be ineffective against new variants of the virus. In November, the FDA revoked emergency authorization of the last monoclonal antibody treatment because it wasn’t expected to have much of an effect against Omicron sub-variants.

In contrast to monoclonal antibody therapies, Levine said, convalescent plasma donated by patients who have recovered from the virus is a treatment that evolves with the pandemic. Because it has antibodies that attach to multiple different parts of the virus, there are still opportunities to attach to a receptor even after the virus mutates and morphs some of its receptors. It’s also less expensive to produce than pharmaceutical antivirals.

In the first year of the pandemic, Levine said, before the development of vaccines and effective treatments, researchers tried many treatment strategies in order to quickly find something that worked to save lives.

“When the next big pandemic hits, we’re going to be in a very similar situation,” Levine said. “Yet at least next time, we’ll have research like this to inform our strategy.”

Source:
Journal reference:

Levine, A.C., et al. (2023) COVID-19 Convalescent Plasma Outpatient Therapy to Prevent Outpatient Hospitalization: A Meta-analysis of Individual Participant Data From Five Randomized Trials. Clinical Infectious Diseases. doi.org/10.1093/cid/ciad088.

Cancer immunotherapy does not interfere with COVID-19 immunity in vaccinated patients, study shows

Research findings published in Frontiers in Immunology show that cancer immunotherapy does not interfere with COVID-19 immunity in previously vaccinated patients. These findings support recommending vaccination for patients with cancer, including those receiving systemic therapies, say Saint Louis University scientists.

Immunotherapy is a treatment strategy that boosts a patient’s immune system to attack cancerous cells. In this novel study led by Ryan Teague, Ph.D., professor of molecular microbiology and immunology at Saint Louis University’s School of Medicine, the Teague lab studied T cell responses and antibody responses against the SARS-CoV-2 spike protein in vaccinated and unvaccinated patients receiving immunotherapy.

Their research found data to support the clinical safety and efficacy of COVID-19 vaccination in patients receiving immune checkpoint inhibitors, a class of immunotherapy drugs.

It was thought that patients who had recently been vaccinated for or exposed to COVID-19 may have boosted inflammatory responses after immune checkpoint blockade treatment. The study found that immunotherapy did not tend to boost immune responses against COVID-19 in vaccinated patients, supporting the safety of receiving immune checkpoint inhibitors and the vaccine simultaneously.”

Ryan Teague, Ph.D., professor of molecular microbiology and immunology at Saint Louis University’s School of Medicine

Teague notes that several timely factors came together to enable this research. In July 2022, the Teague lab published a study in Cancer Immunology Immunotherapy using a new technique known as Single-Cell RNA Sequencing, which allows researchers to study genetic information at the individual cell level to characterize immune responses after cancer treatment to identify biomarkers that could predict better patient outcomes.

Having collected blood from more than 100 patients with cancer during the COVID-19 pandemic, Teague recognized the opportunity to extend the benefit of this collection toward improving our understanding of patient immune responses against the vaccine.

“The COVID paper came from a unique window of time where we had a pandemic, and we had this valuable collection of patient samples that we could use to ask this timely question,” Teague said.

Additional authors include graduate students Alexander Piening, Emily Ebert, Niloufar Khojandi, and Assistant Professor Elise Alspach, Ph.D., from the Department of Molecular Microbiology and Immunology at SLU’s School of Medicine.

This work was supported by grant number NIH NCI R01 CA238705 from the National Institutes of Health.

Source:
Journal reference:

Piening, A., et al. (2022) Immune responses to SARS-CoV-2 in vaccinated patients receiving checkpoint blockade immunotherapy for cancer. Frontiers in Immunology. doi.org/10.3389/fimmu.2022.1022732.